//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // This transformation make the following changes to each loop with an // identifiable induction variable: // 1. All loops are transformed to have a SINGLE canonical induction variable // which starts at zero and steps by one. // 2. The canonical induction variable is guaranteed to be the first PHI node // in the loop header block. // 3. Any pointer arithmetic recurrences are raised to use array subscripts. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // // This transformation should be followed by strength reduction after all of the // desired loop transformations have been performed. Additionally, on targets // where it is profitable, the loop could be transformed to count down to zero // (the "do loop" optimization). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" #include "Support/CommandLine.h" #include "Support/Statistic.h" using namespace llvm; namespace { Statistic<> NumRemoved ("indvars", "Number of aux indvars removed"); Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted"); Statistic<> NumInserted("indvars", "Number of canonical indvars added"); Statistic<> NumReplaced("indvars", "Number of exit values replaced"); Statistic<> NumLFTR ("indvars", "Number of loop exit tests replaced"); class IndVarSimplify : public FunctionPass { LoopInfo *LI; ScalarEvolution *SE; bool Changed; public: virtual bool runOnFunction(Function &) { LI = &getAnalysis(); SE = &getAnalysis(); Changed = false; // Induction Variables live in the header nodes of loops for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) runOnLoop(*I); return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addPreservedID(LoopSimplifyID); AU.setPreservesCFG(); } private: void runOnLoop(Loop *L); void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, std::set &DeadInsts); void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, ScalarEvolutionRewriter &RW); void RewriteLoopExitValues(Loop *L); void DeleteTriviallyDeadInstructions(std::set &Insts); }; RegisterOpt X("indvars", "Canonicalize Induction Variables"); } Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. void IndVarSimplify:: DeleteTriviallyDeadInstructions(std::set &Insts) { while (!Insts.empty()) { Instruction *I = *Insts.begin(); Insts.erase(Insts.begin()); if (isInstructionTriviallyDead(I)) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *U = dyn_cast(I->getOperand(i))) Insts.insert(U); SE->deleteInstructionFromRecords(I); I->getParent()->getInstList().erase(I); Changed = true; } } } /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer /// recurrence. If so, change it into an integer recurrence, permitting /// analysis by the SCEV routines. void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, std::set &DeadInsts) { assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!"); unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader); unsigned BackedgeIdx = PreheaderIdx^1; if (GetElementPtrInst *GEPI = dyn_cast(PN->getIncomingValue(BackedgeIdx))) if (GEPI->getOperand(0) == PN) { assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!"); // Okay, we found a pointer recurrence. Transform this pointer // recurrence into an integer recurrence. Compute the value that gets // added to the pointer at every iteration. Value *AddedVal = GEPI->getOperand(1); // Insert a new integer PHI node into the top of the block. PHINode *NewPhi = new PHINode(AddedVal->getType(), PN->getName()+".rec", PN); NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader); // Create the new add instruction. Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi, AddedVal, GEPI->getName()+".rec", GEPI); NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx)); // Update the existing GEP to use the recurrence. GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx)); // Update the GEP to use the new recurrence we just inserted. GEPI->setOperand(1, NewAdd); // Finally, if there are any other users of the PHI node, we must // insert a new GEP instruction that uses the pre-incremented version // of the induction amount. if (!PN->use_empty()) { BasicBlock::iterator InsertPos = PN; ++InsertPos; while (isa(InsertPos)) ++InsertPos; std::string Name = PN->getName(); PN->setName(""); Value *PreInc = new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx), std::vector(1, NewPhi), Name, InsertPos); PN->replaceAllUsesWith(PreInc); } // Delete the old PHI for sure, and the GEP if its otherwise unused. DeadInsts.insert(PN); ++NumPointer; Changed = true; } } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, ScalarEvolutionRewriter &RW) { // Find the exit block for the loop. We can currently only handle loops with // a single exit. if (L->getExitBlocks().size() != 1) return; BasicBlock *ExitBlock = L->getExitBlocks()[0]; // Make sure there is only one predecessor block in the loop. BasicBlock *ExitingBlock = 0; for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); PI != PE; ++PI) if (L->contains(*PI)) { if (ExitingBlock == 0) ExitingBlock = *PI; else return; // Multiple exits from loop to this block. } assert(ExitingBlock && "Loop info is broken"); if (!isa(ExitingBlock->getTerminator())) return; // Can't rewrite non-branch yet BranchInst *BI = cast(ExitingBlock->getTerminator()); assert(BI->isConditional() && "Must be conditional to be part of loop!"); std::set InstructionsToDelete; if (Instruction *Cond = dyn_cast(BI->getCondition())) InstructionsToDelete.insert(Cond); // If the exiting block is not the same as the backedge block, we must compare // against the preincremented value, otherwise we prefer to compare against // the post-incremented value. BasicBlock *Header = L->getHeader(); pred_iterator HPI = pred_begin(Header); assert(HPI != pred_end(Header) && "Loop with zero preds???"); if (!L->contains(*HPI)) ++HPI; assert(HPI != pred_end(Header) && L->contains(*HPI) && "No backedge in loop?"); SCEVHandle TripCount = IterationCount; Value *IndVar; if (*HPI == ExitingBlock) { // The IterationCount expression contains the number of times that the // backedge actually branches to the loop header. This is one less than the // number of times the loop executes, so add one to it. Constant *OneC = ConstantInt::get(IterationCount->getType(), 1); TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC)); IndVar = L->getCanonicalInductionVariableIncrement(); } else { // We have to use the preincremented value... IndVar = L->getCanonicalInductionVariable(); } // Expand the code for the iteration count into the preheader of the loop. BasicBlock *Preheader = L->getLoopPreheader(); Value *ExitCnt = RW.ExpandCodeFor(TripCount, Preheader->getTerminator(), IndVar->getType()); // Insert a new setne or seteq instruction before the branch. Instruction::BinaryOps Opcode; if (L->contains(BI->getSuccessor(0))) Opcode = Instruction::SetNE; else Opcode = Instruction::SetEQ; Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI); BI->setCondition(Cond); ++NumLFTR; Changed = true; DeleteTriviallyDeadInstructions(InstructionsToDelete); } /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. void IndVarSimplify::RewriteLoopExitValues(Loop *L) { BasicBlock *Preheader = L->getLoopPreheader(); // Scan all of the instructions in the loop, looking at those that have // extra-loop users and which are recurrences. ScalarEvolutionRewriter Rewriter(*SE, *LI); // We insert the code into the preheader of the loop if the loop contains // multiple exit blocks, or in the exit block if there is exactly one. BasicBlock *BlockToInsertInto; if (L->getExitBlocks().size() == 1) BlockToInsertInto = L->getExitBlocks()[0]; else BlockToInsertInto = Preheader; BasicBlock::iterator InsertPt = BlockToInsertInto->begin(); while (isa(InsertPt)) ++InsertPt; std::set InstructionsToDelete; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop... BasicBlock *BB = L->getBlocks()[i]; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (I->getType()->isInteger()) { // Is an integer instruction SCEVHandle SH = SE->getSCEV(I); if (SH->hasComputableLoopEvolution(L)) { // Varies predictably // Find out if this predictably varying value is actually used // outside of the loop. "extra" as opposed to "intra". std::vector ExtraLoopUsers; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (!L->contains(cast(*UI)->getParent())) ExtraLoopUsers.push_back(*UI); if (!ExtraLoopUsers.empty()) { // Okay, this instruction has a user outside of the current loop // and varies predictably in this loop. Evaluate the value it // contains when the loop exits, and insert code for it. SCEVHandle ExitValue = SE->getSCEVAtScope(I,L->getParentLoop()); if (!isa(ExitValue)) { Changed = true; ++NumReplaced; Value *NewVal = Rewriter.ExpandCodeFor(ExitValue, InsertPt, I->getType()); // Rewrite any users of the computed value outside of the loop // with the newly computed value. for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i) ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal); // If this instruction is dead now, schedule it to be removed. if (I->use_empty()) InstructionsToDelete.insert(I); } } } } } DeleteTriviallyDeadInstructions(InstructionsToDelete); } void IndVarSimplify::runOnLoop(Loop *L) { // First step. Check to see if there are any trivial GEP pointer recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); BasicBlock *Preheader = L->getLoopPreheader(); std::set DeadInsts; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(I); ++I) if (isa(PN->getType())) EliminatePointerRecurrence(PN, Preheader, DeadInsts); if (!DeadInsts.empty()) DeleteTriviallyDeadInstructions(DeadInsts); // Next, transform all loops nesting inside of this loop. for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I) runOnLoop(*I); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // SCEVHandle IterationCount = SE->getIterationCount(L); if (!isa(IterationCount)) RewriteLoopExitValues(L); // Next, analyze all of the induction variables in the loop, canonicalizing // auxillary induction variables. std::vector > IndVars; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(I); ++I) if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable! SCEVHandle SCEV = SE->getSCEV(PN); if (SCEV->hasComputableLoopEvolution(L)) if (SE->shouldSubstituteIndVar(SCEV)) // HACK! IndVars.push_back(std::make_pair(PN, SCEV)); } // If there are no induction variables in the loop, there is nothing more to // do. if (IndVars.empty()) return; // Compute the type of the largest recurrence expression. // const Type *LargestType = IndVars[0].first->getType(); bool DifferingSizes = false; for (unsigned i = 1, e = IndVars.size(); i != e; ++i) { const Type *Ty = IndVars[i].first->getType(); DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize(); if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize()) LargestType = Ty; } // Create a rewriter object which we'll use to transform the code with. ScalarEvolutionRewriter Rewriter(*SE, *LI); // Now that we know the largest of of the induction variables in this loop, // insert a canonical induction variable of the largest size. Value *IndVar = Rewriter.GetOrInsertCanonicalInductionVariable(L,LargestType); ++NumInserted; Changed = true; if (!isa(IterationCount)) LinearFunctionTestReplace(L, IterationCount, Rewriter); #if 0 // If there were induction variables of other sizes, cast the primary // induction variable to the right size for them, avoiding the need for the // code evaluation methods to insert induction variables of different sizes. // FIXME! if (DifferingSizes) { std::map InsertedSizes; for (unsigned i = 0, e = IndVars.size(); i != e; ++i) { } } #endif // Now that we have a canonical induction variable, we can rewrite any // recurrences in terms of the induction variable. Start with the auxillary // induction variables, and recursively rewrite any of their uses. BasicBlock::iterator InsertPt = Header->begin(); while (isa(InsertPt)) ++InsertPt; while (!IndVars.empty()) { PHINode *PN = IndVars.back().first; Value *NewVal = Rewriter.ExpandCodeFor(IndVars.back().second, InsertPt, PN->getType()); // Replace the old PHI Node with the inserted computation. PN->replaceAllUsesWith(NewVal); DeadInsts.insert(PN); IndVars.pop_back(); ++NumRemoved; Changed = true; } DeleteTriviallyDeadInstructions(DeadInsts); // TODO: In the future we could replace all instructions in the loop body with // simpler expressions. It's not clear how useful this would be though or if // the code expansion cost would be worth it! We probably shouldn't do this // until we have a way to reuse expressions already in the code. #if 0 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop... BasicBlock *BB = L->getBlocks()[i]; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (I->getType()->isInteger() && // Is an integer instruction !Rewriter.isInsertedInstruction(I)) { SCEVHandle SH = SE->getSCEV(I); } } #endif }