//===- InstrInfoEmitter.h - Generate a Instruction Set Desc. ----*- C++ -*-===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #ifndef INSTRSELECTOR_EMITTER_H #define INSTRSELECTOR_EMITTER_H #include "TableGenBackend.h" #include "CodeGenWrappers.h" #include #include class DagInit; class Init; class InstrSelectorEmitter; /// NodeType - Represents Information parsed from the DagNode entries. /// struct NodeType { enum ArgResultTypes { // Both argument and return types... Val, // A non-void type Arg0, // Value matches the type of Arg0 Ptr, // Tree node is the type of the target pointer // Return types Void, // Tree node always returns void }; ArgResultTypes ResultType; std::vector ArgTypes; NodeType(ArgResultTypes RT, std::vector &AT) : ResultType(RT){ AT.swap(ArgTypes); } NodeType() : ResultType(Val) {} NodeType(const NodeType &N) : ResultType(N.ResultType), ArgTypes(N.ArgTypes){} static ArgResultTypes Translate(Record *R); }; /// TreePatternNode - Represent a node of the tree patterns. /// class TreePatternNode { /// Operator - The operation that this node represents... this is null if this /// is a leaf. Record *Operator; /// Type - The inferred value type... /// MVT::ValueType Type; /// Children - If this is not a leaf (Operator != 0), this is the subtrees /// that we contain. std::vector Children; /// Value - If this node is a leaf, this indicates what the thing is. /// Init *Value; public: TreePatternNode(Record *o, const std::vector &c) : Operator(o), Type(MVT::Other), Children(c), Value(0) {} TreePatternNode(Init *V) : Operator(0), Type(MVT::Other), Value(V) {} Record *getOperator() const { return Operator; } MVT::ValueType getType() const { return Type; } void setType(MVT::ValueType T) { Type = T; } bool isLeaf() const { return Operator == 0; } const std::vector &getChildren() const { assert(Operator != 0 && "This is a leaf node!"); return Children; } TreePatternNode *getChild(unsigned c) const { assert(c < Children.size() && "Child access out of range!"); return getChildren()[c]; } Init *getValue() const { assert(Operator == 0 && "This is not a leaf node!"); return Value; } void dump() const; // UpdateNodeType - Set the node type of N to VT if VT contains information. // If N already contains a conflicting type, then throw an exception. This // returns true if any information was updated. // bool updateNodeType(MVT::ValueType VT, const std::string &RecName); }; std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N); /// Pattern - Represent a pattern of one form or another. Currently, three /// types of patterns are possible: Instruction's, Nonterminals, and Expanders. /// struct Pattern { enum PatternType { Nonterminal, Instruction, Expander }; private: /// PTy - The type of pattern this is. /// PatternType PTy; /// Tree - The tree pattern which corresponds to this pattern. Note that if /// there was a (set) node on the outside level that it has been stripped off. /// TreePatternNode *Tree; /// Result - If this is an instruction or expander pattern, this is the /// register result, specified with a (set) in the pattern. /// Record *Result; /// TheRecord - The actual TableGen record corresponding to this pattern. /// Record *TheRecord; /// Resolved - This is true of the pattern is useful in practice. In /// particular, some non-terminals will have non-resolvable types. When a /// user of the non-terminal is later found, they will have inferred a type /// for the result of the non-terminal, which cause a clone of an unresolved /// nonterminal to be made which is "resolved". /// bool Resolved; /// ISE - the instruction selector emitter coordinating this madness. /// InstrSelectorEmitter &ISE; public: /// Pattern constructor - Parse the specified DagInitializer into the current /// record. Pattern(PatternType pty, DagInit *RawPat, Record *TheRec, InstrSelectorEmitter &ise); /// getPatternType - Return what flavor of Record this pattern originated from /// PatternType getPatternType() const { return PTy; } /// getTree - Return the tree pattern which corresponds to this pattern. /// TreePatternNode *getTree() const { return Tree; } Record *getResult() const { return Result; } /// getRecord - Return the actual TableGen record corresponding to this /// pattern. /// Record *getRecord() const { return TheRecord; } bool isResolved() const { return Resolved; } /// InstantiateNonterminalsReferenced - If this pattern refers to any /// nonterminals which are not themselves completely resolved, clone the /// nonterminal and resolve it with the using context we provide. void InstantiateNonterminalsReferenced(); private: MVT::ValueType getIntrinsicType(Record *R) const; TreePatternNode *ParseTreePattern(DagInit *DI); bool InferTypes(TreePatternNode *N, bool &MadeChange); void error(const std::string &Msg) const; }; std::ostream &operator<<(std::ostream &OS, const Pattern &P); /// InstrSelectorEmitter - The top-level class which coordinates construction /// and emission of the instruction selector. /// class InstrSelectorEmitter : public TableGenBackend { RecordKeeper &Records; CodeGenTarget Target; std::map NodeTypes; /// Patterns - a list of all of the patterns defined by the target description /// std::map Patterns; public: InstrSelectorEmitter(RecordKeeper &R) : Records(R) {} // run - Output the instruction set description, returning true on failure. void run(std::ostream &OS); const CodeGenTarget &getTarget() const { return Target; } std::map &getNodeTypes() { return NodeTypes; } /// getPattern - return the pattern corresponding to the specified record, or /// null if there is none. Pattern *getPattern(Record *R) const { std::map::const_iterator I = Patterns.find(R); return I != Patterns.end() ? I->second : 0; } /// ReadNonterminal - This method parses the specified record as a /// nonterminal, but only if it hasn't been read in already. Pattern *ReadNonterminal(Record *R); private: // ReadNodeTypes - Read in all of the node types in the current RecordKeeper, // turning them into the more accessible NodeTypes data structure. void ReadNodeTypes(); // ReadNonTerminals - Read in all nonterminals and incorporate them into our // pattern database. void ReadNonterminals(); // ReadInstructionPatterns - Read in all subclasses of Instruction, and // process those with a useful Pattern field. void ReadInstructionPatterns(); // ReadExpanderPatterns - Read in all of the expanded patterns. void ReadExpanderPatterns(); // InstantiateNonterminals - Instantiate any unresolved nonterminals with // information from the context that they are used in. void InstantiateNonterminals(); }; #endif