//===- DCE.cpp - Code to perform dead code elimination --------------------===// // // This file implements dead code elimination and basic block merging. // // Specifically, this: // * removes definitions with no uses (including unused constants) // * removes basic blocks with no predecessors // * merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor // * Eliminates a basic block that only contains an unconditional branch // // TODO: This should REALLY be recursive instead of iterative. Right now, we // scan linearly through values, removing unused ones as we go. The problem is // that this may cause other earlier values to become unused. To make sure that // we get them all, we iterate until things stop changing. Instead, when // removing a value, recheck all of its operands to see if they are now unused. // Piece of cake, and more efficient as well. // // Note, this is not trivial, because we have to worry about invalidating // iterators. :( // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/Opt/AllOpts.h" #include "llvm/Assembly/Writer.h" #include "llvm/CFG.h" using namespace cfg; struct ConstPoolDCE { enum { EndOffs = 0 }; static bool isDCEable(const Value *) { return true; } }; struct BasicBlockDCE { enum { EndOffs = 1 }; static bool isDCEable(const Instruction *I) { return !I->hasSideEffects(); } }; template static bool RemoveUnusedDefs(ValueHolder &Vals, DCEController DCEControl) { bool Changed = false; typedef ValueHolder Container; int Offset = DCEController::EndOffs; for (Container::iterator DI = Vals.begin(); DI != Vals.end()-Offset; ) { // Look for un"used" definitions... if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) { // Bye bye //cerr << "Removing: " << *DI; delete Vals.remove(DI); Changed = true; } else { DI++; } } return Changed; } // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only // a single predecessor. This means that the PHI node must only have a single // RHS value and can be eliminated. // // This routine is very simple because we know that PHI nodes must be the first // things in a basic block, if they are present. // static bool RemoveSingularPHIs(BasicBlock *BB) { pred_iterator PI(pred_begin(BB)); if (PI == pred_end(BB) || ++PI != pred_end(BB)) return false; // More than one predecessor... Instruction *I = BB->getInstList().front(); if (I->getInstType() != Instruction::PHINode) return false; // No PHI nodes //cerr << "Killing PHIs from " << BB; //cerr << "Pred #0 = " << *pred_begin(BB); //cerr << "Method == " << BB->getParent(); do { PHINode *PN = (PHINode*)I; assert(PN->getOperand(2) == 0 && "PHI node should only have one value!"); Value *V = PN->getOperand(0); PN->replaceAllUsesWith(V); // Replace PHI node with its single value. delete BB->getInstList().remove(BB->getInstList().begin()); I = BB->getInstList().front(); } while (I->getInstType() == Instruction::PHINode); return true; // Yes, we nuked at least one phi node } bool DoRemoveUnusedConstants(SymTabValue *S) { bool Changed = false; ConstantPool &CP = S->getConstantPool(); for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI) Changed |= RemoveUnusedDefs(**PI, ConstPoolDCE()); return Changed; } static void ReplaceUsesWithConstant(Instruction *I) { // Get the method level constant pool ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); ConstPoolVal *CPV = 0; ConstantPool::PlaneType *P; if (!CP.getPlane(I->getType(), P)) { // Does plane exist? // Yes, is it empty? if (!P->empty()) CPV = P->front(); } if (CPV == 0) { // We don't have an existing constant to reuse. Just add one. CPV = ConstPoolVal::getNullConstant(I->getType()); // Create a new constant // Add the new value to the constant pool... CP.insert(CPV); } // Make all users of this instruction reference the constant instead I->replaceAllUsesWith(CPV); } // RemovePredecessorFromBlock - This function is called when we are about // to remove a predecessor from a basic block. This function takes care of // removing the predecessor from the PHI nodes in BB so that after the pred // is removed, the number of PHI slots per bb is equal to the number of // predecessors. // static void RemovePredecessorFromBlock(BasicBlock *BB, BasicBlock *Pred) { pred_iterator PI(pred_begin(BB)), EI(pred_end(BB)); unsigned max_idx; //cerr << "RPFB: " << Pred << "From Block: " << BB; // Loop over the rest of the predecssors until we run out, or until we find // out that there are more than 2 predecessors. for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/; // If there are exactly two predecessors, then we want to nuke the PHI nodes // altogether. bool NukePHIs = max_idx == 2; assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); // Okay, now we know that we need to remove predecessor #pred_idx from all // PHI nodes. Iterate over each PHI node fixing them up BasicBlock::InstListType::iterator II(BB->getInstList().begin()); for (; (*II)->getInstType() == Instruction::PHINode; ++II) { PHINode *PN = (PHINode*)*II; PN->removeIncomingValue(BB); if (NukePHIs) { // Destroy the PHI altogether?? assert(PN->getOperand(1) == 0 && "PHI node should only have one value!"); Value *V = PN->getOperand(0); PN->replaceAllUsesWith(V); // Replace PHI node with its single value. delete BB->getInstList().remove(II); } } } // PropogatePredecessors - This gets "Succ" ready to have the predecessors from // "BB". This is a little tricky because "Succ" has PHI nodes, which need to // have extra slots added to them to hold the merge edges from BB's // predecessors. // // Assumption: BB is the single predecessor of Succ. // static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(BB && Succ && *pred_begin(Succ) == BB && "BB is only pred of Succ" && ++pred_begin(Succ) == pred_end(Succ)); // If there is more than one predecessor, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes pred_iterator PI(pred_begin(BB)); for (; PI != pred_end(BB); ++PI) { // TODO: } } static bool DoDCEPass(Method *M) { Method::BasicBlocksType &BBs = M->getBasicBlocks(); Method::BasicBlocksType::iterator BBIt, BBEnd = BBs.end(); if (BBs.begin() == BBEnd) return false; // Nothing to do bool Changed = false; // Loop through now and remove instructions that have no uses... for (BBIt = BBs.begin(); BBIt != BBEnd; BBIt++) { Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE()); Changed |= RemoveSingularPHIs(*BBIt); } // Loop over all of the basic blocks (except the first one) and remove them // if they are unneeded... // for (BBIt = BBs.begin(), ++BBIt; BBIt != BBs.end(); ++BBIt) { BasicBlock *BB = *BBIt; assert(BB->getTerminator() && "Degenerate basic block encountered!"); #if 0 // Remove basic blocks that have no predecessors... which are unreachable. if (pred_begin(BB) == pred_end(BB) && !BB->hasConstantPoolReferences() && 0) { cerr << "Removing BB: \n" << BB; // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for (succ_iterator SI = succ_begin(BB), EI = succ_end(BB); SI != EI; ++SI) RemovePredecessorFromBlock(*SI, BB); while (!BB->getInstList().empty()) { Instruction *I = BB->getInstList().front(); // If this instruction is used, replace uses with an arbitrary // constant value. Because control flow can't get here, we don't care // what we replace the value with. if (!I->use_empty()) ReplaceUsesWithConstant(I); // Remove the instruction from the basic block delete BB->getInstList().remove(BB->getInstList().begin()); } delete BBs.remove(BBIt); --BBIt; // remove puts use on the next block, we want the previous one Changed = true; continue; } // Check to see if this block has no instructions and only a single // successor. If so, replace block references with successor. succ_iterator SI(succ_begin(BB)); if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? Instruction *I = BB->getInstList().front(); if (I->isTerminator()) { // Terminator is the only instruction! if (Succ->getInstList().front()->getInstType() == Instruction::PHINode){ // Add entries to the PHI nodes so that the PHI nodes have the right // number of entries... PropogatePredecessorsForPHIs(BB, Succ); } BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor BB->replaceAllUsesWith(Succ); cerr << "Killing Trivial BB: \n" << BB; BB = BBs.remove(BBIt); --BBIt; // remove puts use on the next block, we want the previous one if (BB->hasName() && !Succ->hasName()) // Transfer name if we can Succ->setName(BB->getName()); delete BB; // Delete basic block cerr << "Method after removal: \n" << M; Changed = true; continue; } } #endif // Merge basic blocks into their predecessor if there is only one pred, // and if there is only one successor of the predecessor. pred_iterator PI(pred_begin(BB)); if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? ++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) { BasicBlock *Pred = *pred_begin(BB); TerminatorInst *Term = Pred->getTerminator(); assert(Term != 0 && "malformed basic block without terminator!"); // Does the predecessor block only have a single successor? succ_iterator SI(succ_begin(Pred)); if (++SI == succ_end(Pred)) { //cerr << "Merging: " << BB << "into: " << Pred; // Delete the unconditianal branch from the predecessor... BasicBlock::InstListType::iterator DI = Pred->getInstList().end(); assert(Pred->getTerminator() && "Degenerate basic block encountered!"); // Empty bb??? delete Pred->getInstList().remove(--DI); // Destroy uncond branch // Move all definitions in the succecessor to the predecessor... while (!BB->getInstList().empty()) { DI = BB->getInstList().begin(); Instruction *Def = BB->getInstList().remove(DI); // Remove from front Pred->getInstList().push_back(Def); // Add to end... } // Remove basic block from the method... and advance iterator to the // next valid block... BB = BBs.remove(BBIt); --BBIt; // remove puts us on the NEXT bb. We want the prev BB Changed = true; // Make all PHI nodes that refered to BB now refer to Pred as their // source... BB->replaceAllUsesWith(Pred); // Inherit predecessors name if it exists... if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); // You ARE the weakest link... goodbye delete BB; WriteToVCG(M, "MergedInto"); } } } // Remove unused constants Changed |= DoRemoveUnusedConstants(M); return Changed; } // It is possible that we may require multiple passes over the code to fully // eliminate dead code. Iterate until we are done. // bool DoDeadCodeElimination(Method *M) { bool Changed = false; while (DoDCEPass(M)) Changed = true; return Changed; } bool DoDeadCodeElimination(Module *C) { bool Val = ApplyOptToAllMethods(C, DoDeadCodeElimination); while (DoRemoveUnusedConstants(C)) Val = true; return Val; }