//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// // // This pass is designed to be a very quick global transformation that // eliminates global common subexpressions from a function. It does this by // examining the SSA value graph of the function, instead of doing slow, dense, // bit-vector computations. // // This pass works best if it is proceeded with a simple constant propogation // pass and an instruction combination pass because this pass does not do any // value numbering (in order to be speedy). // // This pass does not attempt to CSE load instructions, because it does not use // pointer analysis to determine when it is safe. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/InstrTypes.h" #include "llvm/iMemory.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/CFG.h" #include "Support/StatisticReporter.h" #include using std::set; using std::map; static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed"); static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed"); namespace { class GCSE : public FunctionPass, public InstVisitor { set WorkList; DominatorSet *DomSetInfo; ImmediateDominators *ImmDominator; AliasAnalysis *AA; public: virtual bool runOnFunction(Function &F); // Visitation methods, these are invoked depending on the type of // instruction being checked. They should return true if a common // subexpression was folded. // bool visitBinaryOperator(Instruction &I); bool visitGetElementPtrInst(GetElementPtrInst &I); bool visitCastInst(CastInst &I); bool visitShiftInst(ShiftInst &I) { return visitBinaryOperator((Instruction&)I); } bool visitLoadInst(LoadInst &LI); bool visitInstruction(Instruction &) { return false; } private: void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); bool CommonSubExpressionFound(Instruction *I, Instruction *Other); // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with // removing loads is that intervening stores might make otherwise identical // load's yield different values. To ensure that this is not the case, we // check that there are no intervening stores or calls between the // instructions. // bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2); // CheckForInvalidatingInst - Return true if BB or any of the predecessors // of BB (until DestBB) contain an instruction that might invalidate Ptr. // bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, Value *Ptr, set &VisitedSet); // This transformation requires dominator and immediate dominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } }; RegisterOpt X("gcse", "Global Common Subexpression Elimination"); } // createGCSEPass - The public interface to this file... Pass *createGCSEPass() { return new GCSE(); } // GCSE::runOnFunction - This is the main transformation entry point for a // function. // bool GCSE::runOnFunction(Function &F) { bool Changed = false; // Get pointers to the analysis results that we will be using... DomSetInfo = &getAnalysis(); ImmDominator = &getAnalysis(); AA = &getAnalysis(); // Step #1: Add all instructions in the function to the worklist for // processing. All of the instructions are considered to be our // subexpressions to eliminate if possible. // WorkList.insert(inst_begin(F), inst_end(F)); // Step #2: WorkList processing. Iterate through all of the instructions, // checking to see if there are any additionally defined subexpressions in the // program. If so, eliminate them! // while (!WorkList.empty()) { Instruction &I = **WorkList.begin(); // Get an instruction from the worklist WorkList.erase(WorkList.begin()); // Visit the instruction, dispatching to the correct visit function based on // the instruction type. This does the checking. // Changed |= visit(I); } // When the worklist is empty, return whether or not we changed anything... return Changed; } // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all // uses of the instruction use First now instead. // void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { Instruction &Second = *SI; //cerr << "DEL " << (void*)Second << Second; // Add the first instruction back to the worklist WorkList.insert(First); // Add all uses of the second instruction to the worklist for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end(); UI != UE; ++UI) WorkList.insert(cast(*UI)); // Make all users of 'Second' now use 'First' Second.replaceAllUsesWith(First); // Erase the second instruction from the program Second.getParent()->getInstList().erase(SI); } // CommonSubExpressionFound - The two instruction I & Other have been found to // be common subexpressions. This function is responsible for eliminating one // of them, and for fixing the worklist to be correct. // bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { assert(I != Other); WorkList.erase(I); WorkList.erase(Other); // Other may not actually be on the worklist anymore... ++NumInstRemoved; // Keep track of number of instructions eliminated // Handle the easy case, where both instructions are in the same basic block BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); if (BB1 == BB2) { // Eliminate the second occuring instruction. Add all uses of the second // instruction to the worklist. // // Scan the basic block looking for the "first" instruction BasicBlock::iterator BI = BB1->begin(); while (&*BI != I && &*BI != Other) { ++BI; assert(BI != BB1->end() && "Instructions not found in parent BB!"); } // Keep track of which instructions occurred first & second Instruction *First = BI; Instruction *Second = I != First ? I : Other; // Get iterator to second inst BI = Second; // Destroy Second, using First instead. ReplaceInstWithInst(First, BI); // Otherwise, the two instructions are in different basic blocks. If one // dominates the other instruction, we can simply use it // } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other? ReplaceInstWithInst(I, Other); } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I? ReplaceInstWithInst(Other, I); } else { // This code is disabled because it has several problems: // One, the actual assumption is wrong, as shown by this code: // int "test"(int %X, int %Y) { // %Z = add int %X, %Y // ret int %Z // Unreachable: // %Q = add int %X, %Y // ret int %Q // } // // Here there are no shared dominators. Additionally, this had the habit of // moving computations where they were not always computed. For example, in // a cast like this: // if (c) { // if (d) ... // else ... X+Y ... // } else { // ... X+Y ... // } // // In thiscase, the expression would be hoisted to outside the 'if' stmt, // causing the expression to be evaluated, even for the if (d) path, which // could cause problems, if, for example, it caused a divide by zero. In // general the problem this case is trying to solve is better addressed with // PRE than GCSE. // return false; #if 0 // Handle the most general case now. In this case, neither I dom Other nor // Other dom I. Because we are in SSA form, we are guaranteed that the // operands of the two instructions both dominate the uses, so we _know_ // that there must exist a block that dominates both instructions (if the // operands of the instructions are globals or constants, worst case we // would get the entry node of the function). Search for this block now. // // Search up the immediate dominator chain of BB1 for the shared dominator BasicBlock *SharedDom = (*ImmDominator)[BB1]; while (!DomSetInfo->dominates(SharedDom, BB2)) SharedDom = (*ImmDominator)[SharedDom]; // At this point, shared dom must dominate BOTH BB1 and BB2... assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) && DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!"); // Rip 'I' out of BB1, and move it to the end of SharedDom. BB1->getInstList().remove(I); SharedDom->getInstList().insert(--SharedDom->end(), I); // Eliminate 'Other' now. ReplaceInstWithInst(I, Other); #endif } return true; } //===----------------------------------------------------------------------===// // // Visitation methods, these are invoked depending on the type of instruction // being checked. They should return true if a common subexpression was folded. // //===----------------------------------------------------------------------===// bool GCSE::visitCastInst(CastInst &CI) { Instruction &I = (Instruction&)CI; Value *Op = I.getOperand(0); Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast(*UI)) // Check to see if this new cast is not I, but has the same operand... if (Other != &I && Other->getOpcode() == I.getOpcode() && Other->getOperand(0) == Op && // Is the operand the same? // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) Other->getParent()->getParent() == F && // Check that the types are the same, since this code handles casts... Other->getType() == I.getType()) { // These instructions are identical. Handle the situation. if (CommonSubExpressionFound(&I, Other)) return true; // One instruction eliminated! } return false; } // isIdenticalBinaryInst - Return true if the two binary instructions are // identical. // static inline bool isIdenticalBinaryInst(const Instruction &I1, const Instruction *I2) { // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) if (I1.getOpcode() != I2->getOpcode() || I1.getParent()->getParent() != I2->getParent()->getParent()) return false; // They are identical if both operands are the same! if (I1.getOperand(0) == I2->getOperand(0) && I1.getOperand(1) == I2->getOperand(1)) return true; // If the instruction is commutative and associative, the instruction can // match if the operands are swapped! // if ((I1.getOperand(0) == I2->getOperand(1) && I1.getOperand(1) == I2->getOperand(0)) && (I1.getOpcode() == Instruction::Add || I1.getOpcode() == Instruction::Mul || I1.getOpcode() == Instruction::And || I1.getOpcode() == Instruction::Or || I1.getOpcode() == Instruction::Xor)) return true; return false; } bool GCSE::visitBinaryOperator(Instruction &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast(*UI)) // Check to see if this new binary operator is not I, but same operand... if (Other != &I && isIdenticalBinaryInst(I, Other)) { // These instructions are identical. Handle the situation. if (CommonSubExpressionFound(&I, Other)) return true; // One instruction eliminated! } return false; } // IdenticalComplexInst - Return true if the two instructions are the same, by // using a brute force comparison. // static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) { assert(I1->getOpcode() == I2->getOpcode()); // Equal if they are in the same function... return I1->getParent()->getParent() == I2->getParent()->getParent() && // And return the same type... I1->getType() == I2->getType() && // And have the same number of operands... I1->getNumOperands() == I2->getNumOperands() && // And all of the operands are equal. std::equal(I1->op_begin(), I1->op_end(), I2->op_begin()); } bool GCSE::visitGetElementPtrInst(GetElementPtrInst &I) { Value *Op = I.getOperand(0); Function *F = I.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (GetElementPtrInst *Other = dyn_cast(*UI)) // Check to see if this new getelementptr is not I, but same operand... if (Other != &I && IdenticalComplexInst(&I, Other)) { // These instructions are identical. Handle the situation. if (CommonSubExpressionFound(&I, Other)) return true; // One instruction eliminated! } return false; } bool GCSE::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); Function *F = LI.getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (LoadInst *Other = dyn_cast(*UI)) // Check to see if this new load is not LI, but has the same operands... if (Other != &LI && IdenticalComplexInst(&LI, Other) && TryToRemoveALoad(&LI, Other)) return true; // An instruction was eliminated! return false; } // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing // loads is that intervening stores might make otherwise identical load's yield // different values. To ensure that this is not the case, we check that there // are no intervening stores or calls between the instructions. // bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) { // Figure out which load dominates the other one. If neither dominates the // other we cannot eliminate one... // if (DomSetInfo->dominates(L2, L1)) std::swap(L1, L2); // Make L1 dominate L2 else if (!DomSetInfo->dominates(L1, L2)) return false; // Neither instruction dominates the other one... BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); assert(!L1->hasIndices()); Value *LoadAddress = L1->getOperand(0); // L1 now dominates L2. Check to see if the intervening instructions between // the two loads include a store or call... // if (BB1 == BB2) { // In same basic block? // In this degenerate case, no checking of global basic blocks has to occur // just check the instructions BETWEEN L1 & L2... // if (AA->canInstructionRangeModify(*L1, *L2, LoadAddress)) return false; // Cannot eliminate load ++NumLoadRemoved; if (CommonSubExpressionFound(L1, L2)) return true; } else { // Make sure that there are no store instructions between L1 and the end of // it's basic block... // if (AA->canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress)) return false; // Cannot eliminate load // Make sure that there are no store instructions between the start of BB2 // and the second load instruction... // if (AA->canInstructionRangeModify(BB2->front(), *L2, LoadAddress)) return false; // Cannot eliminate load // Do a depth first traversal of the inverse CFG starting at L2's block, // looking for L1's block. The inverse CFG is made up of the predecessor // nodes of a block... so all of the edges in the graph are "backward". // set VisitedSet; for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, VisitedSet)) return false; ++NumLoadRemoved; return CommonSubExpressionFound(L1, L2); } return false; } // CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB // (until DestBB) contain an instruction that might invalidate Ptr. // bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, Value *Ptr, set &VisitedSet) { // Found the termination point! if (BB == DestBB || VisitedSet.count(BB)) return false; // Avoid infinite recursion! VisitedSet.insert(BB); // Can this basic block modify Ptr? if (AA->canBasicBlockModify(*BB, Ptr)) return true; // Check all of our predecessor blocks... for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) if (CheckForInvalidatingInst(*PI, DestBB, Ptr, VisitedSet)) return true; // None of our predecessor blocks contain a store, and we don't either! return false; }