// $Id$ -*- C++ -*-- //*************************************************************************** // File: // SparcInternals.h // // Purpose: // This file defines stuff that is to be private to the Sparc // backend, but is shared among different portions of the backend. //**************************************************************************/ #ifndef SPARC_INTERNALS_H #define SPARC_INTERNALS_H #include "SparcRegClassInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Target/MachineSchedInfo.h" #include "llvm/Target/MachineFrameInfo.h" #include "llvm/Target/MachineCacheInfo.h" #include "llvm/CodeGen/RegClass.h" #include "llvm/Type.h" #include class UltraSparc; // OpCodeMask definitions for the Sparc V9 // const OpCodeMask Immed = 0x00002000; // immed or reg operand? const OpCodeMask Annul = 0x20000000; // annul delay instr? const OpCodeMask PredictTaken = 0x00080000; // predict branch taken? enum SparcInstrSchedClass { SPARC_NONE, /* Instructions with no scheduling restrictions */ SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */ SPARC_IEU0, /* Integer class IEU0 */ SPARC_IEU1, /* Integer class IEU1 */ SPARC_FPM, /* FP Multiply or Divide instructions */ SPARC_FPA, /* All other FP instructions */ SPARC_CTI, /* Control-transfer instructions */ SPARC_LD, /* Load instructions */ SPARC_ST, /* Store instructions */ SPARC_SINGLE, /* Instructions that must issue by themselves */ SPARC_INV, /* This should stay at the end for the next value */ SPARC_NUM_SCHED_CLASSES = SPARC_INV }; //--------------------------------------------------------------------------- // enum SparcMachineOpCode. // const MachineInstrDescriptor SparcMachineInstrDesc[] // // Purpose: // Description of UltraSparc machine instructions. // //--------------------------------------------------------------------------- enum SparcMachineOpCode { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ ENUM, #include "SparcInstr.def" // End-of-array marker INVALID_OPCODE, NUM_REAL_OPCODES = PHI, // number of valid opcodes NUM_TOTAL_OPCODES = INVALID_OPCODE }; // Array of machine instruction descriptions... extern const MachineInstrDescriptor SparcMachineInstrDesc[]; //--------------------------------------------------------------------------- // class UltraSparcInstrInfo // // Purpose: // Information about individual instructions. // Most information is stored in the SparcMachineInstrDesc array above. // Other information is computed on demand, and most such functions // default to member functions in base class MachineInstrInfo. //--------------------------------------------------------------------------- class UltraSparcInstrInfo : public MachineInstrInfo { public: /*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt); // // All immediate constants are in position 0 except the // store instructions. // virtual int getImmmedConstantPos(MachineOpCode opCode) const { bool ignore; if (this->maxImmedConstant(opCode, ignore) != 0) { assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD return (opCode >= STB || opCode <= STD)? 2 : 1; } else return -1; } virtual bool hasResultInterlock (MachineOpCode opCode) const { // All UltraSPARC instructions have interlocks (note that delay slots // are not considered here). // However, instructions that use the result of an FCMP produce a // 9-cycle stall if they are issued less than 3 cycles after the FCMP. // Force the compiler to insert a software interlock (i.e., gap of // 2 other groups, including NOPs if necessary). return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ); } //------------------------------------------------------------------------- // Code generation support for creating individual machine instructions //------------------------------------------------------------------------- // Create an instruction sequence to put the constant `val' into // the virtual register `dest'. The generated instructions are // returned in `minstrVec'. Any temporary registers (TmpInstruction) // created are returned in `tempVec'. // virtual void CreateCodeToLoadConst(Value* val, Instruction* dest, std::vector& minstrVec, std::vector& tmp) const; // Create an instruction sequence to copy an integer value `val' // to a floating point value `dest' by copying to memory and back. // val must be an integral type. dest must be a Float or Double. // The generated instructions are returned in `minstrVec'. // Any temp. registers (TmpInstruction) created are returned in `tempVec'. // virtual void CreateCodeToCopyIntToFloat(Method* method, Value* val, Instruction* dest, std::vector& minstr, std::vector& temp, TargetMachine& target) const; // Similarly, create an instruction sequence to copy an FP value // `val' to an integer value `dest' by copying to memory and back. // See the previous function for information about return values. // virtual void CreateCodeToCopyFloatToInt(Method* method, Value* val, Instruction* dest, std::vector& minstr, std::vector& temp, TargetMachine& target) const; // create copy instruction(s) virtual void CreateCopyInstructionsByType(const TargetMachine& target, Value* src, Instruction* dest, std::vector& minstr) const; }; //---------------------------------------------------------------------------- // class UltraSparcRegInfo // // This class implements the virtual class MachineRegInfo for Sparc. // //---------------------------------------------------------------------------- class LiveRange; class UltraSparc; class PhyRegAlloc; class UltraSparcRegInfo : public MachineRegInfo { private: // The actual register classes in the Sparc // enum RegClassIDs { IntRegClassID, // Integer FloatRegClassID, // Float (both single/double) IntCCRegClassID, // Int Condition Code FloatCCRegClassID // Float Condition code }; // Type of registers available in Sparc. There can be several reg types // in the same class. For instace, the float reg class has Single/Double // types // enum RegTypes { IntRegType, FPSingleRegType, FPDoubleRegType, IntCCRegType, FloatCCRegType }; // **** WARNING: If the above enum order is changed, also modify // getRegisterClassOfValue method below since it assumes this particular // order for efficiency. // reverse pointer to get info about the ultra sparc machine // const UltraSparc *const UltraSparcInfo; // Number of registers used for passing int args (usually 6: %o0 - %o5) // unsigned const NumOfIntArgRegs; // Number of registers used for passing float args (usually 32: %f0 - %f31) // unsigned const NumOfFloatArgRegs; // An out of bound register number that can be used to initialize register // numbers. Useful for error detection. // int const InvalidRegNum; // ======================== Private Methods ============================= // The following methods are used to color special live ranges (e.g. // method args and return values etc.) with specific hardware registers // as required. See SparcRegInfo.cpp for the implementation. // void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo, const MachineInstr *MI,AddedInstrMapType &AIMap)const; MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg, unsigned RegClassID) const ; void suggestReg4RetAddr(const MachineInstr * RetMI, LiveRangeInfo& LRI) const; void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI, std::vector RCList) const; // The following methods are used to find the addresses etc. contained // in specail machine instructions like CALL/RET // Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ; const Value *getCallInstRetAddr(const MachineInstr *CallMI) const; const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const; // The following 3 methods are used to find the RegType (see enum above) // of a LiveRange, Value and using the unified RegClassID int getRegType(const LiveRange *const LR) const { unsigned Typ; switch( (LR->getRegClass())->getID() ) { case IntRegClassID: return IntRegType; case FloatRegClassID: Typ = LR->getTypeID(); if( Typ == Type::FloatTyID ) return FPSingleRegType; else if( Typ == Type::DoubleTyID ) return FPDoubleRegType; else assert(0 && "Unknown type in FloatRegClass"); case IntCCRegClassID: return IntCCRegType; case FloatCCRegClassID: return FloatCCRegType ; default: assert( 0 && "Unknown reg class ID"); return 0; } } int getRegType(const Value *const Val) const { unsigned Typ; switch( getRegClassIDOfValue(Val) ) { case IntRegClassID: return IntRegType; case FloatRegClassID: Typ = (Val->getType())->getPrimitiveID(); if( Typ == Type::FloatTyID ) return FPSingleRegType; else if( Typ == Type::DoubleTyID ) return FPDoubleRegType; else assert(0 && "Unknown type in FloatRegClass"); case IntCCRegClassID: return IntCCRegType; case FloatCCRegClassID: return FloatCCRegType ; default: assert( 0 && "Unknown reg class ID"); return 0; } } int getRegType(int reg) const { if( reg < 32 ) return IntRegType; else if ( reg < (32 + 32) ) return FPSingleRegType; else if ( reg < (64 + 32) ) return FPDoubleRegType; else if( reg < (64+32+4) ) return FloatCCRegType; else if( reg < (64+32+4+2) ) return IntCCRegType; else assert(0 && "Invalid register number in getRegType"); } // The following methods are used to generate copy instructions to move // data between condition code registers // MachineInstr * cpCCR2IntMI(const unsigned IntReg) const; MachineInstr * cpInt2CCRMI(const unsigned IntReg) const; // Used to generate a copy instruction based on the register class of // value. // MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg, const int RegType) const; // The following 2 methods are used to order the instructions addeed by // the register allocator in association with method calling. See // SparcRegInfo.cpp for more details // void moveInst2OrdVec(std::vector &OrdVec, MachineInstr *UnordInst, PhyRegAlloc &PRA) const; void OrderAddedInstrns(std::vector &UnordVec, std::vector &OrdVec, PhyRegAlloc &PRA) const; // To find whether a particular call is to a var arg method // bool isVarArgCall(const MachineInstr *CallMI) const; public: // constructor // UltraSparcRegInfo(const TargetMachine& tgt ) : MachineRegInfo(tgt), UltraSparcInfo(& (const UltraSparc&) tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32), InvalidRegNum(1000) { MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) ); MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) ); MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) ); MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID)); assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 && "32 Float regs are used for float arg passing"); } ~UltraSparcRegInfo(void) { } // empty destructor // To get complete machine information structure using the machine register // information // inline const UltraSparc & getUltraSparcInfo() const { return *UltraSparcInfo; } // To find the register class of a Value // inline unsigned getRegClassIDOfValue (const Value *const Val, bool isCCReg = false) const { Type::PrimitiveID ty = (Val->getType())->getPrimitiveID(); unsigned res; if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) || (ty == Type::MethodTyID) || (ty == Type::PointerTyID) ) res = IntRegClassID; // sparc int reg (ty=0: void) else if( ty <= Type::DoubleTyID) res = FloatRegClassID; // sparc float reg class else { std::cerr << "TypeID: " << ty << "\n"; assert(0 && "Cannot resolve register class for type"); return 0; } if(isCCReg) return res + 2; // corresponidng condition code regiser else return res; } // returns the register that contains always zero // this is the unified register number // inline int getZeroRegNum() const { return SparcIntRegOrder::g0; } // returns the reg used for pushing the address when a method is called. // This can be used for other purposes between calls // unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; } // Returns the register containing the return address. // It should be made sure that this register contains the return // value when a return instruction is reached. // unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; } // The following methods are used to color special live ranges (e.g. // method args and return values etc.) with specific hardware registers // as required. See SparcRegInfo.cpp for the implementation for Sparc. // void suggestRegs4MethodArgs(const Method *const Meth, LiveRangeInfo& LRI) const; void suggestRegs4CallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI, std::vector RCL) const; void suggestReg4RetValue(const MachineInstr *const RetMI, LiveRangeInfo& LRI) const; void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI, AddedInstrns *const FirstAI) const; void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI, AddedInstrns *const CallAI, PhyRegAlloc &PRA, const BasicBlock *BB) const; void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI, AddedInstrns *const RetAI) const; // method used for printing a register for debugging purposes // static void printReg(const LiveRange *const LR) ; // this method provides a unique number for each register // inline int getUnifiedRegNum(int RegClassID, int reg) const { if( RegClassID == IntRegClassID && reg < 32 ) return reg; else if ( RegClassID == FloatRegClassID && reg < 64) return reg + 32; // we have 32 int regs else if( RegClassID == FloatCCRegClassID && reg < 4) return reg + 32 + 64; // 32 int, 64 float else if( RegClassID == IntCCRegClassID ) return 4+ 32 + 64; // only int cc reg else if (reg==InvalidRegNum) return InvalidRegNum; else assert(0 && "Invalid register class or reg number"); return 0; } // given the unified register number, this gives the name // for generating assembly code or debugging. // inline const std::string getUnifiedRegName(int reg) const { if( reg < 32 ) return SparcIntRegOrder::getRegName(reg); else if ( reg < (64 + 32) ) return SparcFloatRegOrder::getRegName( reg - 32); else if( reg < (64+32+4) ) return SparcFloatCCRegOrder::getRegName( reg -32 - 64); else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4); else if (reg== InvalidRegNum) //****** TODO: Remove */ return "<*NoReg*>"; else assert(0 && "Invalid register number"); return ""; } // The fllowing methods are used by instruction selection // inline unsigned getRegNumInCallersWindow(int reg) { if (reg == InvalidRegNum || reg >= 32) return reg; return SparcIntRegOrder::getRegNumInCallersWindow(reg); } inline bool mustBeRemappedInCallersWindow(int reg) { return (reg != InvalidRegNum && reg < 32); } // returns the # of bytes of stack space allocated for each register // type. For Sparc, currently we allocate 8 bytes on stack for all // register types. We can optimize this later if necessary to save stack // space (However, should make sure that stack alignment is correct) // inline int getSpilledRegSize(const int RegType) const { return 8; } // To obtain the return value contained in a CALL machine instruction // const Value * getCallInstRetVal(const MachineInstr *CallMI) const; // The following methods are used to generate "copy" machine instructions // for an architecture. // MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg, const int RegType) const; MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg, const int Offset, const int RegType) const; MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset, const unsigned DestReg, const int RegType) const; MachineInstr* cpValue2Value(Value *Src, Value *Dest) const; // To see whether a register is a volatile (i.e., whehter it must be // preserved acorss calls) // inline bool isRegVolatile(const int RegClassID, const int Reg) const { return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg); } inline unsigned getFramePointer() const { return SparcIntRegOrder::i6; } inline unsigned getStackPointer() const { return SparcIntRegOrder::o6; } inline int getInvalidRegNum() const { return InvalidRegNum; } // This method inserts the caller saving code for call instructions // void insertCallerSavingCode(const MachineInstr *MInst, const BasicBlock *BB, PhyRegAlloc &PRA ) const; }; /*--------------------------------------------------------------------------- Scheduling guidelines for SPARC IIi: I-Cache alignment rules (pg 326) -- Align a branch target instruction so that it's entire group is within the same cache line (may be 1-4 instructions). ** Don't let a branch that is predicted taken be the last instruction on an I-cache line: delay slot will need an entire line to be fetched -- Make a FP instruction or a branch be the 4th instruction in a group. For branches, there are tradeoffs in reordering to make this happen (see pg. 327). ** Don't put a branch in a group that crosses a 32-byte boundary! An artificial branch is inserted after every 32 bytes, and having another branch will force the group to be broken into 2 groups. iTLB rules: -- Don't let a loop span two memory pages, if possible Branch prediction performance: -- Don't make the branch in a delay slot the target of a branch -- Try not to have 2 predicted branches within a group of 4 instructions (because each such group has a single branch target field). -- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid the wrong prediction bits being used in some cases). D-Cache timing constraints: -- Signed int loads of less than 64 bits have 3 cycle latency, not 2 -- All other loads that hit in D-Cache have 2 cycle latency -- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit -- Mis-aligned loads or stores cause a trap. In particular, replace mis-aligned FP double precision l/s with 2 single-precision l/s. -- Simulations of integer codes show increase in avg. group size of 33% when code (including esp. non-faulting loads) is moved across one branch, and 50% across 2 branches. E-Cache timing constraints: -- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering) Store buffer timing constraints: -- Stores can be executed in same cycle as instruction producing the value -- Stores are buffered and have lower priority for E-cache until highwater mark is reached in the store buffer (5 stores) Pipeline constraints: -- Shifts can only use IEU0. -- CC setting instructions can only use IEU1. -- Several other instructions must only use IEU1: EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP. -- Two instructions cannot store to the same register file in a single cycle (single write port per file). Issue and grouping constraints: -- FP and branch instructions must use slot 4. -- Shift instructions cannot be grouped with other IEU0-specific instructions. -- CC setting instructions cannot be grouped with other IEU1-specific instrs. -- Several instructions must be issued in a single-instruction group: MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others -- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs. -- -- Branch delay slot scheduling rules: -- A CTI couple (two back-to-back CTI instructions in the dynamic stream) has a 9-instruction penalty: the entire pipeline is flushed when the second instruction reaches stage 9 (W-Writeback). -- Avoid putting multicycle instructions, and instructions that may cause load misses, in the delay slot of an annulling branch. -- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the delay slot of an annulling branch. *--------------------------------------------------------------------------- */ //--------------------------------------------------------------------------- // List of CPUResources for UltraSPARC IIi. //--------------------------------------------------------------------------- const CPUResource AllIssueSlots( "All Instr Slots", 4); const CPUResource IntIssueSlots( "Int Instr Slots", 3); const CPUResource First3IssueSlots("Instr Slots 0-3", 3); const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1); const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1); const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1); const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1); // IEUN instructions can use either Alu and should use IAluN. // IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0. // IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1. const CPUResource IAluN("Int ALU 1or2", 2); const CPUResource IAlu0("Int ALU 1", 1); const CPUResource IAlu1("Int ALU 2", 1); const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1); const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1); const CPUResource LdReturn("Load Return Unit", 1); const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1); const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1); const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1); const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1); const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1); const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1); const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK const CPUResource CTIDelayCycle( "CTI delay cycle", 1); const CPUResource FCMPDelayCycle("FCMP delay cycle", 1); //--------------------------------------------------------------------------- // const InstrClassRUsage SparcRUsageDesc[] // // Purpose: // Resource usage information for instruction in each scheduling class. // The InstrRUsage Objects for individual classes are specified first. // Note that fetch and decode are decoupled from the execution pipelines // via an instr buffer, so they are not included in the cycles below. //--------------------------------------------------------------------------- const InstrClassRUsage NoneClassRUsage = { SPARC_NONE, /*totCycles*/ 7, /* maxIssueNum */ 4, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 0, /* V[] */ { /*Cycle G */ /*Ccle E */ /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; const InstrClassRUsage IEUNClassRUsage = { SPARC_IEUN, /*totCycles*/ 7, /* maxIssueNum */ 3, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage IEU0ClassRUsage = { SPARC_IEU0, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, { IAlu0.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage IEU1ClassRUsage = { SPARC_IEU1, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, { IAlu1.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage FPMClassRUsage = { SPARC_FPM, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 7, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { FPMIssueSlots.rid, 0, 1 }, /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, /*Cycle C */ { FPMAluC1.rid, 2, 1 }, /*Cycle N1*/ { FPMAluC2.rid, 3, 1 }, /*Cycle N1*/ { FPMAluC3.rid, 4, 1 }, /*Cycle N1*/ /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage FPAClassRUsage = { SPARC_FPA, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 7, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { FPAIssueSlots.rid, 0, 1 }, /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, /*Cycle C */ { FPAAluC1.rid, 2, 1 }, /*Cycle N1*/ { FPAAluC2.rid, 3, 1 }, /*Cycle N1*/ { FPAAluC3.rid, 4, 1 }, /*Cycle N1*/ /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage LDClassRUsage = { SPARC_LD, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2, }, /*numEntries*/ 6, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { First3IssueSlots.rid, 0, 1 }, { LSIssueSlots.rid, 0, 1 }, /*Cycle E */ { LSAluC1.rid, 1, 1 }, /*Cycle C */ { LSAluC2.rid, 2, 1 }, { LdReturn.rid, 2, 1 }, /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; const InstrClassRUsage STClassRUsage = { SPARC_ST, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { First3IssueSlots.rid, 0, 1 }, { LSIssueSlots.rid, 0, 1 }, /*Cycle E */ { LSAluC1.rid, 1, 1 }, /*Cycle C */ { LSAluC2.rid, 2, 1 } /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; const InstrClassRUsage CTIClassRUsage = { SPARC_CTI, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { CTIIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAlu0.rid, 1, 1 }, /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 } /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; const InstrClassRUsage SingleClassRUsage = { SPARC_SINGLE, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ true, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 1, /* feasibleSlots[] */ { 0 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAlu0.rid, 1, 1 } /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; const InstrClassRUsage SparcRUsageDesc[] = { NoneClassRUsage, IEUNClassRUsage, IEU0ClassRUsage, IEU1ClassRUsage, FPMClassRUsage, FPAClassRUsage, CTIClassRUsage, LDClassRUsage, STClassRUsage, SingleClassRUsage }; //--------------------------------------------------------------------------- // const InstrIssueDelta SparcInstrIssueDeltas[] // // Purpose: // Changes to issue restrictions information in InstrClassRUsage for // instructions that differ from other instructions in their class. //--------------------------------------------------------------------------- const InstrIssueDelta SparcInstrIssueDeltas[] = { // opCode, isSingleIssue, breaksGroup, numBubbles // Special cases for single-issue only // Other single issue cases are below. //{ LDDA, true, true, 0 }, //{ STDA, true, true, 0 }, //{ LDDF, true, true, 0 }, //{ LDDFA, true, true, 0 }, { ADDC, true, true, 0 }, { ADDCcc, true, true, 0 }, { SUBC, true, true, 0 }, { SUBCcc, true, true, 0 }, //{ LDSTUB, true, true, 0 }, //{ SWAP, true, true, 0 }, //{ SWAPA, true, true, 0 }, //{ CAS, true, true, 0 }, //{ CASA, true, true, 0 }, //{ CASX, true, true, 0 }, //{ CASXA, true, true, 0 }, //{ LDFSR, true, true, 0 }, //{ LDFSRA, true, true, 0 }, //{ LDXFSR, true, true, 0 }, //{ LDXFSRA, true, true, 0 }, //{ STFSR, true, true, 0 }, //{ STFSRA, true, true, 0 }, //{ STXFSR, true, true, 0 }, //{ STXFSRA, true, true, 0 }, //{ SAVED, true, true, 0 }, //{ RESTORED, true, true, 0 }, //{ FLUSH, true, true, 9 }, //{ FLUSHW, true, true, 9 }, //{ ALIGNADDR, true, true, 0 }, { RETURN, true, true, 0 }, //{ DONE, true, true, 0 }, //{ RETRY, true, true, 0 }, //{ TCC, true, true, 0 }, //{ SHUTDOWN, true, true, 0 }, // Special cases for breaking group *before* // CURRENTLY NOT SUPPORTED! { CALL, false, false, 0 }, { JMPLCALL, false, false, 0 }, { JMPLRET, false, false, 0 }, // Special cases for breaking the group *after* { MULX, true, true, (4+34)/2 }, { FDIVS, false, true, 0 }, { FDIVD, false, true, 0 }, { FDIVQ, false, true, 0 }, { FSQRTS, false, true, 0 }, { FSQRTD, false, true, 0 }, { FSQRTQ, false, true, 0 }, //{ FCMP{LE,GT,NE,EQ}, false, true, 0 }, // Instructions that introduce bubbles //{ MULScc, true, true, 2 }, //{ SMULcc, true, true, (4+18)/2 }, //{ UMULcc, true, true, (4+19)/2 }, { SDIVX, true, true, 68 }, { UDIVX, true, true, 68 }, //{ SDIVcc, true, true, 36 }, //{ UDIVcc, true, true, 37 }, { WRCCR, true, true, 4 }, //{ WRPR, true, true, 4 }, //{ RDCCR, true, true, 0 }, // no bubbles after, but see below //{ RDPR, true, true, 0 }, }; //--------------------------------------------------------------------------- // const InstrRUsageDelta SparcInstrUsageDeltas[] // // Purpose: // Changes to resource usage information in InstrClassRUsage for // instructions that differ from other instructions in their class. //--------------------------------------------------------------------------- const InstrRUsageDelta SparcInstrUsageDeltas[] = { // MachineOpCode, Resource, Start cycle, Num cycles // // JMPL counts as a load/store instruction for issue! // { JMPLCALL, LSIssueSlots.rid, 0, 1 }, { JMPLRET, LSIssueSlots.rid, 0, 1 }, // // Many instructions cannot issue for the next 2 cycles after an FCMP // We model that with a fake resource FCMPDelayCycle. // { FCMPS, FCMPDelayCycle.rid, 1, 3 }, { FCMPD, FCMPDelayCycle.rid, 1, 3 }, { FCMPQ, FCMPDelayCycle.rid, 1, 3 }, { MULX, FCMPDelayCycle.rid, 1, 1 }, { SDIVX, FCMPDelayCycle.rid, 1, 1 }, { UDIVX, FCMPDelayCycle.rid, 1, 1 }, //{ SMULcc, FCMPDelayCycle.rid, 1, 1 }, //{ UMULcc, FCMPDelayCycle.rid, 1, 1 }, //{ SDIVcc, FCMPDelayCycle.rid, 1, 1 }, //{ UDIVcc, FCMPDelayCycle.rid, 1, 1 }, { STD, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 }, { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 }, // // Some instructions are stalled in the GROUP stage if a CTI is in // the E or C stage. We model that with a fake resource CTIDelayCycle. // { LDD, CTIDelayCycle.rid, 1, 1 }, //{ LDDA, CTIDelayCycle.rid, 1, 1 }, //{ LDDSTUB, CTIDelayCycle.rid, 1, 1 }, //{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 }, //{ SWAP, CTIDelayCycle.rid, 1, 1 }, //{ SWAPA, CTIDelayCycle.rid, 1, 1 }, //{ CAS, CTIDelayCycle.rid, 1, 1 }, //{ CASA, CTIDelayCycle.rid, 1, 1 }, //{ CASX, CTIDelayCycle.rid, 1, 1 }, //{ CASXA, CTIDelayCycle.rid, 1, 1 }, // // Signed int loads of less than dword size return data in cycle N1 (not C) // and put all loads in consecutive cycles into delayed load return mode. // { LDSB, LdReturn.rid, 2, -1 }, { LDSB, LdReturn.rid, 3, 1 }, { LDSH, LdReturn.rid, 2, -1 }, { LDSH, LdReturn.rid, 3, 1 }, { LDSW, LdReturn.rid, 2, -1 }, { LDSW, LdReturn.rid, 3, 1 }, // // RDPR from certain registers and RD from any register are not dispatchable // until four clocks after they reach the head of the instr. buffer. // Together with their single-issue requirement, this means all four issue // slots are effectively blocked for those cycles, plus the issue cycle. // This does not increase the latency of the instruction itself. // { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, #undef EXPLICIT_BUBBLES_NEEDED #ifdef EXPLICIT_BUBBLES_NEEDED // // MULScc inserts one bubble. // This means it breaks the current group (captured in UltraSparcSchedInfo) // *and occupies all issue slots for the next cycle // //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, // // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1. // We just model this with a simple average. // //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1. //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, // // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1. // { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, // // SDIVcc inserts 36 bubbles. // //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, // UDIVcc inserts 37 bubbles. //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, // // SDIVX inserts 68 bubbles. // { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, // // UDIVX inserts 68 bubbles. // { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, // // WR inserts 4 bubbles. // //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, // // WRPR inserts 4 bubbles. // //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, // // DONE inserts 9 bubbles. // //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, // // RETRY inserts 9 bubbles. // //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, #endif /*EXPLICIT_BUBBLES_NEEDED */ }; // Additional delays to be captured in code: // 1. RDPR from several state registers (page 349) // 2. RD from *any* register (page 349) // 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349) // 4. Integer store can be in same group as instr producing value to store. // 5. BICC and BPICC can be in the same group as instr producing CC (pg 350) // 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351). // 7. The second instr. of a CTI group inserts 9 bubbles (pg 351) // 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that // follow an annulling branch cannot be issued in the same group or in // the 3 groups following the branch. // 9. A predicted annulled load does not stall dependent instructions. // Other annulled delay slot instructions *do* stall dependents, so // nothing special needs to be done for them during scheduling. //10. Do not put a load use that may be annulled in the same group as the // branch. The group will stall until the load returns. //11. Single-prec. FP loads lock 2 registers, for dependency checking. // // // Additional delays we cannot or will not capture: // 1. If DCTI is last word of cache line, it is delayed until next line can be // fetched. Also, other DCTI alignment-related delays (pg 352) // 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache. // Also, several other store-load and load-store conflicts (pg 358) // 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358) // 4. There can be at most 8 outstanding buffered store instructions // (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH) //--------------------------------------------------------------------------- // class UltraSparcSchedInfo // // Purpose: // Interface to instruction scheduling information for UltraSPARC. // The parameter values above are based on UltraSPARC IIi. //--------------------------------------------------------------------------- class UltraSparcSchedInfo: public MachineSchedInfo { public: /*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt); /*dtor*/ virtual ~UltraSparcSchedInfo () {} protected: virtual void initializeResources (); }; //--------------------------------------------------------------------------- // class UltraSparcFrameInfo // // Purpose: // Interface to stack frame layout info for the UltraSPARC. // Starting offsets for each area of the stack frame are aligned at // a multiple of getStackFrameSizeAlignment(). //--------------------------------------------------------------------------- class UltraSparcFrameInfo: public MachineFrameInfo { public: /*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {} public: int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;} int getMinStackFrameSize () const { return MinStackFrameSize; } int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; } int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; } bool argsOnStackHaveFixedSize () const { return true; } // // These methods compute offsets using the frame contents for a // particular method. The frame contents are obtained from the // MachineCodeInfoForMethod object for the given method. // int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo, bool& pos) const { pos = true; // arguments area grows upwards return FirstIncomingArgOffsetFromFP; } int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo, bool& pos) const { pos = true; // arguments area grows upwards return FirstOutgoingArgOffsetFromSP; } int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo, bool& pos)const { pos = true; // arguments area grows upwards return FirstOptionalOutgoingArgOffsetFromSP; } int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo, bool& pos) const; int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo, bool& pos) const; int getTmpAreaOffset (MachineCodeForMethod& mcInfo, bool& pos) const; int getDynamicAreaOffset (MachineCodeForMethod& mcInfo, bool& pos) const; // // These methods specify the base register used for each stack area // (generally FP or SP) // virtual int getIncomingArgBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getOutgoingArgBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } virtual int getOptionalOutgoingArgBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } virtual int getAutomaticVarBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getRegSpillAreaBaseRegNum() const { return (int) target.getRegInfo().getFramePointer(); } virtual int getDynamicAreaBaseRegNum() const { return (int) target.getRegInfo().getStackPointer(); } private: // All stack addresses must be offset by 0x7ff (2047) on Sparc V9. static const int OFFSET = (int) 0x7ff; static const int StackFrameSizeAlignment = 16; static const int MinStackFrameSize = 176; static const int NumFixedOutgoingArgs = 6; static const int SizeOfEachArgOnStack = 8; static const int StaticAreaOffsetFromFP = 0 + OFFSET; static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET; static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET; static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET; static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET; }; //--------------------------------------------------------------------------- // class UltraSparcCacheInfo // // Purpose: // Interface to cache parameters for the UltraSPARC. // Just use defaults for now. //--------------------------------------------------------------------------- class UltraSparcCacheInfo: public MachineCacheInfo { public: /*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) : MachineCacheInfo(target) {} }; //--------------------------------------------------------------------------- // class UltraSparcMachine // // Purpose: // Primary interface to machine description for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class TargetMachine, and creates machine-dependent subclasses // for classes such as InstrInfo, SchedInfo and RegInfo. //--------------------------------------------------------------------------- class UltraSparc : public TargetMachine { private: UltraSparcInstrInfo instrInfo; UltraSparcSchedInfo schedInfo; UltraSparcRegInfo regInfo; UltraSparcFrameInfo frameInfo; UltraSparcCacheInfo cacheInfo; public: UltraSparc(); virtual ~UltraSparc() {} virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; } virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; } virtual const MachineRegInfo &getRegInfo() const { return regInfo; } virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; } virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; } // compileMethod - For the sparc, we do instruction selection, followed by // delay slot scheduling, then register allocation. // virtual bool compileMethod(Method *M); // // emitAssembly - Output assembly language code (a .s file) for the specified // module. The specified module must have been compiled before this may be // used. // virtual void emitAssembly(const Module *M, std::ostream &OutStr) const; }; #endif