//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*--=// // // This file contains the declaration of the MachineInstr class, which is the // basic representation for all target dependant machine instructions used by // the back end. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Annotation.h" #include class Instruction; //--------------------------------------------------------------------------- // class MachineOperand // // Purpose: // Representation of each machine instruction operand. // This class is designed so that you can allocate a vector of operands // first and initialize each one later. // // E.g, for this VM instruction: // ptr = alloca type, numElements // we generate 2 machine instructions on the SPARC: // // mul Constant, Numelements -> Reg // add %sp, Reg -> Ptr // // Each instruction has 3 operands, listed above. Of those: // - Reg, NumElements, and Ptr are of operand type MO_Register. // - Constant is of operand type MO_SignExtendedImmed on the SPARC. // // For the register operands, the virtual register type is as follows: // // - Reg will be of virtual register type MO_MInstrVirtualReg. The field // MachineInstr* minstr will point to the instruction that computes reg. // // - %sp will be of virtual register type MO_MachineReg. // The field regNum identifies the machine register. // // - NumElements will be of virtual register type MO_VirtualReg. // The field Value* value identifies the value. // // - Ptr will also be of virtual register type MO_VirtualReg. // Again, the field Value* value identifies the value. // //--------------------------------------------------------------------------- class MachineOperand { public: enum MachineOperandType { MO_VirtualRegister, // virtual register for *value MO_MachineRegister, // pre-assigned machine register `regNum' MO_CCRegister, MO_SignExtendedImmed, MO_UnextendedImmed, MO_PCRelativeDisp, }; private: // Bit fields of the flags variable used for different operand properties static const char DEFFLAG = 0x1; // this is a def of the operand static const char DEFUSEFLAG = 0x2; // this is both a def and a use static const char HIFLAG32 = 0x4; // operand is %hi32(value_or_immedVal) static const char LOFLAG32 = 0x8; // operand is %lo32(value_or_immedVal) static const char HIFLAG64 = 0x10; // operand is %hi64(value_or_immedVal) static const char LOFLAG64 = 0x20; // operand is %lo64(value_or_immedVal) private: union { Value* value; // BasicBlockVal for a label operand. // ConstantVal for a non-address immediate. // Virtual register for an SSA operand, // including hidden operands required for // the generated machine code. int64_t immedVal; // constant value for an explicit constant }; MachineOperandType opType:8; // Pack into 8 bits efficiently after flags. char flags; // see bit field definitions above int regNum; // register number for an explicit register // will be set for a value after reg allocation public: /*ctor*/ MachineOperand (); /*ctor*/ MachineOperand (MachineOperandType operandType, Value* _val); /*copy ctor*/ MachineOperand (const MachineOperand&); /*dtor*/ ~MachineOperand () {} // Accessor methods. Caller is responsible for checking the // operand type before invoking the corresponding accessor. // inline MachineOperandType getOperandType() const { return opType; } inline Value* getVRegValue () const { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_PCRelativeDisp); return value; } inline Value* getVRegValueOrNull() const { return (opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_PCRelativeDisp)? value : NULL; } inline int getMachineRegNum() const { assert(opType == MO_MachineRegister); return regNum; } inline int64_t getImmedValue () const { assert(opType == MO_SignExtendedImmed || opType == MO_UnextendedImmed); return immedVal; } inline bool opIsDef () const { return flags & DEFFLAG; } inline bool opIsDefAndUse () const { return flags & DEFUSEFLAG; } inline bool opHiBits32 () const { return flags & HIFLAG32; } inline bool opLoBits32 () const { return flags & LOFLAG32; } inline bool opHiBits64 () const { return flags & HIFLAG64; } inline bool opLoBits64 () const { return flags & LOFLAG64; } // used to check if a machine register has been allocated to this operand inline bool hasAllocatedReg() const { return (regNum >= 0 && (opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister)); } // used to get the reg number if when one is allocated inline int getAllocatedRegNum() const { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister); return regNum; } public: friend std::ostream& operator<<(std::ostream& os, const MachineOperand& mop); private: // These functions are provided so that a vector of operands can be // statically allocated and individual ones can be initialized later. // Give class MachineInstr access to these functions. // void Initialize (MachineOperandType operandType, Value* _val); void InitializeConst (MachineOperandType operandType, int64_t intValue); void InitializeReg (int regNum, bool isCCReg); // Construction methods needed for fine-grain control. // These must be accessed via coresponding methods in MachineInstr. void markDef() { flags |= DEFFLAG; } void markDefAndUse() { flags |= DEFUSEFLAG; } void markHi32() { flags |= HIFLAG32; } void markLo32() { flags |= LOFLAG32; } void markHi64() { flags |= HIFLAG64; } void markLo64() { flags |= LOFLAG64; } // Replaces the Value with its corresponding physical register after // register allocation is complete void setRegForValue(int reg) { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister); regNum = reg; } friend class MachineInstr; }; inline MachineOperand::MachineOperand() : immedVal(0), opType(MO_VirtualRegister), flags(0), regNum(-1) {} inline MachineOperand::MachineOperand(MachineOperandType operandType, Value* _val) : immedVal(0), opType(operandType), flags(0), regNum(-1) {} inline MachineOperand::MachineOperand(const MachineOperand& mo) : opType(mo.opType), flags(mo.flags) { switch(opType) { case MO_VirtualRegister: case MO_CCRegister: value = mo.value; break; case MO_MachineRegister: regNum = mo.regNum; break; case MO_SignExtendedImmed: case MO_UnextendedImmed: case MO_PCRelativeDisp: immedVal = mo.immedVal; break; default: assert(0); } } inline void MachineOperand::Initialize(MachineOperandType operandType, Value* _val) { opType = operandType; value = _val; regNum = -1; flags = 0; } inline void MachineOperand::InitializeConst(MachineOperandType operandType, int64_t intValue) { opType = operandType; value = NULL; immedVal = intValue; regNum = -1; flags = 0; } inline void MachineOperand::InitializeReg(int _regNum, bool isCCReg) { opType = isCCReg? MO_CCRegister : MO_MachineRegister; value = NULL; regNum = (int) _regNum; flags = 0; } //--------------------------------------------------------------------------- // class MachineInstr // // Purpose: // Representation of each machine instruction. // // MachineOpCode must be an enum, defined separately for each target. // E.g., It is defined in SparcInstructionSelection.h for the SPARC. // // opCodeMask is used to record variants of an instruction. // E.g., each branch instruction on SPARC has 2 flags (i.e., 4 variants): // ANNUL: if 1: Annul delay slot instruction. // PREDICT-NOT-TAKEN: if 1: predict branch not taken. // Instead of creating 4 different opcodes for BNZ, we create a single // opcode and set bits in opCodeMask for each of these flags. // // There are 2 kinds of operands: // // (1) Explicit operands of the machine instruction in vector operands[] // // (2) "Implicit operands" are values implicitly used or defined by the // machine instruction, such as arguments to a CALL, return value of // a CALL (if any), and return value of a RETURN. //--------------------------------------------------------------------------- class MachineInstr : public Annotable, // MachineInstrs are annotable public NonCopyable { // Disable copy operations MachineOpCode opCode; // the opcode OpCodeMask opCodeMask; // extra bits for variants of an opcode std::vector operands; // the operands struct ImplicitRef { Value *Val; bool isDef, isDefAndUse; ImplicitRef(Value *V, bool D, bool DU) : Val(V), isDef(D), isDefAndUse(DU){} }; // implicitRefs - Values implicitly referenced by this machine instruction // (eg, call args) std::vector implicitRefs; // regsUsed - all machine registers used for this instruction, including regs // used to save values across the instruction. This is a bitset of registers. std::vector regsUsed; public: /*ctor*/ MachineInstr (MachineOpCode _opCode, OpCodeMask _opCodeMask = 0x0); /*ctor*/ MachineInstr (MachineOpCode _opCode, unsigned numOperands, OpCodeMask _opCodeMask = 0x0); inline ~MachineInstr () {} // // Support to rewrite a machine instruction in place: for now, simply // replace() and then set new operands with Set.*Operand methods below. // void replace (MachineOpCode _opCode, unsigned numOperands, OpCodeMask _opCodeMask = 0x0); // // The op code. Note that MachineOpCode is a target-specific type. // const MachineOpCode getOpCode () const { return opCode; } // // Information about explicit operands of the instruction // unsigned int getNumOperands () const { return operands.size(); } bool operandIsDefined(unsigned i) const; bool operandIsDefinedAndUsed(unsigned i) const; const MachineOperand& getOperand (unsigned i) const; MachineOperand& getOperand (unsigned i); // // Information about implicit operands of the instruction // unsigned getNumImplicitRefs() const{ return implicitRefs.size();} bool implicitRefIsDefined(unsigned i) const; bool implicitRefIsDefinedAndUsed(unsigned i) const; const Value* getImplicitRef (unsigned i) const; Value* getImplicitRef (unsigned i); // // Information about registers used in this instruction // const std::vector &getRegsUsed () const { return regsUsed; } // insertUsedReg - Add a register to the Used registers set... void insertUsedReg(unsigned Reg) { if (Reg >= regsUsed.size()) regsUsed.resize(Reg+1); regsUsed[Reg] = true; } // // Debugging support // void dump () const; friend std::ostream& operator<< (std::ostream& os, const MachineInstr& minstr); // // Define iterators to access the Value operands of the Machine Instruction. // begin() and end() are defined to produce these iterators... // template class ValOpIterator; typedef ValOpIterator const_val_op_iterator; typedef ValOpIterator< MachineInstr*, Value*> val_op_iterator; // Access to set the operands when building the machine instruction // void SetMachineOperandVal(unsigned i, MachineOperand::MachineOperandType operandType, Value* _val, bool isDef=false, bool isDefAndUse=false); void SetMachineOperandConst(unsigned i, MachineOperand::MachineOperandType operandType, int64_t intValue); void SetMachineOperandReg(unsigned i, int regNum, bool isDef=false, bool isDefAndUse=false, bool isCCReg=false); void addImplicitRef (Value* val, bool isDef=false, bool isDefAndUse=false); void setImplicitRef (unsigned i, Value* val, bool isDef=false, bool isDefAndUse=false); unsigned substituteValue (const Value* oldVal, Value* newVal, bool defsOnly = true); void setOperandHi32 (unsigned i); void setOperandLo32 (unsigned i); void setOperandHi64 (unsigned i); void setOperandLo64 (unsigned i); // Replaces the Value for the operand with its allocated // physical register after register allocation is complete. // void SetRegForOperand(unsigned i, int regNum); // // Iterator to enumerate machine operands. // template class ValOpIterator : public forward_iterator { unsigned i; MITy MI; inline void skipToNextVal() { while (i < MI->getNumOperands() && !((MI->getOperand(i).getOperandType() == MachineOperand::MO_VirtualRegister || MI->getOperand(i).getOperandType() == MachineOperand::MO_CCRegister) && MI->getOperand(i).getVRegValue() != 0)) ++i; } inline ValOpIterator(MITy mi, unsigned I) : i(I), MI(mi) { skipToNextVal(); } public: typedef ValOpIterator _Self; inline VTy operator*() const { return MI->getOperand(i).getVRegValue(); } const MachineOperand &getMachineOperand() const { return MI->getOperand(i);} MachineOperand &getMachineOperand() { return MI->getOperand(i);} inline VTy operator->() const { return operator*(); } inline bool isDef() const { return MI->getOperand(i).opIsDef(); } inline bool isDefAndUse() const { return MI->getOperand(i).opIsDefAndUse();} inline _Self& operator++() { i++; skipToNextVal(); return *this; } inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; } inline bool operator==(const _Self &y) const { return i == y.i; } inline bool operator!=(const _Self &y) const { return !operator==(y); } static _Self begin(MITy MI) { return _Self(MI, 0); } static _Self end(MITy MI) { return _Self(MI, MI->getNumOperands()); } }; // define begin() and end() val_op_iterator begin() { return val_op_iterator::begin(this); } val_op_iterator end() { return val_op_iterator::end(this); } const_val_op_iterator begin() const { return const_val_op_iterator::begin(this); } const_val_op_iterator end() const { return const_val_op_iterator::end(this); } }; inline MachineOperand& MachineInstr::getOperand(unsigned int i) { assert(i < operands.size() && "getOperand() out of range!"); return operands[i]; } inline const MachineOperand& MachineInstr::getOperand(unsigned int i) const { assert(i < operands.size() && "getOperand() out of range!"); return operands[i]; } inline bool MachineInstr::operandIsDefined(unsigned int i) const { return getOperand(i).opIsDef(); } inline bool MachineInstr::operandIsDefinedAndUsed(unsigned int i) const { return getOperand(i).opIsDefAndUse(); } inline bool MachineInstr::implicitRefIsDefined(unsigned i) const { assert(i < implicitRefs.size() && "operand out of range!"); return implicitRefs[i].isDef; } inline bool MachineInstr::implicitRefIsDefinedAndUsed(unsigned i) const { assert(i < implicitRefs.size() && "operand out of range!"); return implicitRefs[i].isDefAndUse; } inline const Value* MachineInstr::getImplicitRef(unsigned i) const { assert(i < implicitRefs.size() && "getImplicitRef() out of range!"); return implicitRefs[i].Val; } inline Value* MachineInstr::getImplicitRef(unsigned i) { assert(i < implicitRefs.size() && "getImplicitRef() out of range!"); return implicitRefs[i].Val; } inline void MachineInstr::addImplicitRef(Value* val, bool isDef, bool isDefAndUse) { implicitRefs.push_back(ImplicitRef(val, isDef, isDefAndUse)); } inline void MachineInstr::setImplicitRef(unsigned int i, Value* val, bool isDef, bool isDefAndUse) { assert(i < implicitRefs.size() && "setImplicitRef() out of range!"); implicitRefs[i].Val = val; implicitRefs[i].isDef = isDef; implicitRefs[i].isDefAndUse = isDefAndUse; } inline void MachineInstr::setOperandHi32(unsigned i) { operands[i].markHi32(); } inline void MachineInstr::setOperandLo32(unsigned i) { operands[i].markLo32(); } inline void MachineInstr::setOperandHi64(unsigned i) { operands[i].markHi64(); } inline void MachineInstr::setOperandLo64(unsigned i) { operands[i].markLo64(); } //--------------------------------------------------------------------------- // Debugging Support //--------------------------------------------------------------------------- std::ostream& operator<< (std::ostream& os, const MachineInstr& minstr); std::ostream& operator<< (std::ostream& os, const MachineOperand& mop); void PrintMachineInstructions(const Function *F); #endif