//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the target-independent ELF writer. This file writes out // the ELF file in the following order: // // #1. ELF Header // #2. '.text' section // #3. '.data' section // #4. '.bss' section (conceptual position in file) // ... // #X. '.shstrtab' section // #Y. Section Table // // The entries in the section table are laid out as: // #0. Null entry [required] // #1. ".text" entry - the program code // #2. ".data" entry - global variables with initializers. [ if needed ] // #3. ".bss" entry - global variables without initializers. [ if needed ] // ... // #N. ".shstrtab" entry - String table for the section names. // // NOTE: This code should eventually be extended to support 64-bit ELF (this // won't be hard), but we haven't done so yet! // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "elfwriter" #include "ELFWriter.h" #include "ELFCodeEmitter.h" #include "ELF.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/FileWriters.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetELFWriterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/OutputBuffer.h" #include "llvm/Support/Streams.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Debug.h" #include using namespace llvm; char ELFWriter::ID = 0; /// AddELFWriter - Concrete function to add the ELF writer to the function pass /// manager. MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM, raw_ostream &O, TargetMachine &TM) { ELFWriter *EW = new ELFWriter(O, TM); PM.add(EW); return &EW->getMachineCodeEmitter(); } //===----------------------------------------------------------------------===// // ELFWriter Implementation //===----------------------------------------------------------------------===// ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm) : MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() { is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; isLittleEndian = TM.getTargetData()->isLittleEndian(); ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0, is64Bit, isLittleEndian); // Create the machine code emitter object for this target. MCE = new ELFCodeEmitter(*this); NumSections = 0; } ELFWriter::~ELFWriter() { delete MCE; delete ElfHdr; } // doInitialization - Emit the file header and all of the global variables for // the module to the ELF file. bool ELFWriter::doInitialization(Module &M) { Mang = new Mangler(M); // Local alias to shortenify coming code. std::vector &FH = FileHeader; OutputBuffer FHOut(FH, is64Bit, isLittleEndian); // ELF Header // ---------- // Fields e_shnum e_shstrndx are only known after all section have // been emitted. They locations in the ouput buffer are recorded so // to be patched up later. // // Note // ---- // FHOut.outaddr method behaves differently for ELF32 and ELF64 writing // 4 bytes in the former and 8 in the last for *_off and *_addr elf types FHOut.outbyte(0x7f); // e_ident[EI_MAG0] FHOut.outbyte('E'); // e_ident[EI_MAG1] FHOut.outbyte('L'); // e_ident[EI_MAG2] FHOut.outbyte('F'); // e_ident[EI_MAG3] FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS] FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA] FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION] FH.resize(16); // e_ident[EI_NIDENT-EI_PAD] FHOut.outhalf(ET_REL); // e_type FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target FHOut.outword(EV_CURRENT); // e_version FHOut.outaddr(0); // e_entry = 0, no entry point in .o file FHOut.outaddr(0); // e_phoff = 0, no program header for .o ELFHdr_e_shoff_Offset = FH.size(); FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size FHOut.outhalf(0); // e_phentsize = prog header entry size FHOut.outhalf(0); // e_phnum = # prog header entries = 0 // e_shentsize = Section header entry size FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit)); // e_shnum = # of section header ents ELFHdr_e_shnum_Offset = FH.size(); FHOut.outhalf(0); // e_shstrndx = Section # of '.shstrtab' ELFHdr_e_shstrndx_Offset = FH.size(); FHOut.outhalf(0); // Add the null section, which is required to be first in the file. getSection("", ELFSection::SHT_NULL, 0); // Start up the symbol table. The first entry in the symtab is the null // entry. SymbolTable.push_back(ELFSym(0)); return false; } void ELFWriter::EmitGlobal(GlobalVariable *GV) { // If this is an external global, emit it now. TODO: Note that it would be // better to ignore the symbol here and only add it to the symbol table if // referenced. if (!GV->hasInitializer()) { ELFSym ExternalSym(GV); ExternalSym.SetBind(ELFSym::STB_GLOBAL); ExternalSym.SetType(ELFSym::STT_NOTYPE); ExternalSym.SectionIdx = ELFSection::SHN_UNDEF; SymbolTable.push_back(ExternalSym); return; } unsigned Align = TM.getTargetData()->getPreferredAlignment(GV); unsigned Size = TM.getTargetData()->getTypeAllocSize(GV->getType()->getElementType()); // If this global has a zero initializer, it is part of the .bss or common // section. if (GV->getInitializer()->isNullValue()) { // If this global is part of the common block, add it now. Variables are // part of the common block if they are zero initialized and allowed to be // merged with other symbols. if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() || GV->hasCommonLinkage()) { ELFSym CommonSym(GV); // Value for common symbols is the alignment required. CommonSym.Value = Align; CommonSym.Size = Size; CommonSym.SetBind(ELFSym::STB_GLOBAL); CommonSym.SetType(ELFSym::STT_OBJECT); // TODO SOMEDAY: add ELF visibility. CommonSym.SectionIdx = ELFSection::SHN_COMMON; SymbolTable.push_back(CommonSym); return; } // Otherwise, this symbol is part of the .bss section. Emit it now. // Handle alignment. Ensure section is aligned at least as much as required // by this symbol. ELFSection &BSSSection = getBSSSection(); BSSSection.Align = std::max(BSSSection.Align, Align); // Within the section, emit enough virtual padding to get us to an alignment // boundary. if (Align) BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1); ELFSym BSSSym(GV); BSSSym.Value = BSSSection.Size; BSSSym.Size = Size; BSSSym.SetType(ELFSym::STT_OBJECT); switch (GV->getLinkage()) { default: // weak/linkonce/common handled above assert(0 && "Unexpected linkage type!"); case GlobalValue::AppendingLinkage: // FIXME: This should be improved! case GlobalValue::ExternalLinkage: BSSSym.SetBind(ELFSym::STB_GLOBAL); break; case GlobalValue::InternalLinkage: BSSSym.SetBind(ELFSym::STB_LOCAL); break; } // Set the idx of the .bss section BSSSym.SectionIdx = BSSSection.SectionIdx; if (!GV->hasPrivateLinkage()) SymbolTable.push_back(BSSSym); // Reserve space in the .bss section for this symbol. BSSSection.Size += Size; return; } // FIXME: handle .rodata //assert(!GV->isConstant() && "unimp"); // FIXME: handle .data //assert(0 && "unimp"); } bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { // Nothing to do here, this is all done through the MCE object above. return false; } /// doFinalization - Now that the module has been completely processed, emit /// the ELF file to 'O'. bool ELFWriter::doFinalization(Module &M) { // Okay, the ELF header and .text sections have been completed, build the // .data, .bss, and "common" sections next. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EmitGlobal(I); // Emit the symbol table now, if non-empty. EmitSymbolTable(); // Emit the relocation sections. EmitRelocations(); // Emit the string table for the sections in the ELF file. EmitSectionTableStringTable(); // Emit the sections to the .o file, and emit the section table for the file. OutputSectionsAndSectionTable(); // We are done with the abstract symbols. SectionList.clear(); NumSections = 0; // Release the name mangler object. delete Mang; Mang = 0; return false; } /// EmitRelocations - Emit relocations void ELFWriter::EmitRelocations() { } /// EmitSymbolTable - If the current symbol table is non-empty, emit the string /// table for it and then the symbol table itself. void ELFWriter::EmitSymbolTable() { if (SymbolTable.size() == 1) return; // Only the null entry. // FIXME: compact all local symbols to the start of the symtab. unsigned FirstNonLocalSymbol = 1; ELFSection &StrTab = getSection(".strtab", ELFSection::SHT_STRTAB, 0); StrTab.Align = 1; DataBuffer &StrTabBuf = StrTab.SectionData; OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian); // Set the zero'th symbol to a null byte, as required. StrTabOut.outbyte(0); unsigned Index = 1; for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) { // Use the name mangler to uniquify the LLVM symbol. std::string Name = Mang->getValueName(SymbolTable[i].GV); if (Name.empty()) { SymbolTable[i].NameIdx = 0; } else { SymbolTable[i].NameIdx = Index; // Add the name to the output buffer, including the null terminator. StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end()); // Add a null terminator. StrTabBuf.push_back(0); // Keep track of the number of bytes emitted to this section. Index += Name.size()+1; } } assert(Index == StrTabBuf.size()); StrTab.Size = Index; // Now that we have emitted the string table and know the offset into the // string table of each symbol, emit the symbol table itself. ELFSection &SymTab = getSection(".symtab", ELFSection::SHT_SYMTAB, 0); SymTab.Align = is64Bit ? 8 : 4; SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab. SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol. SymTab.EntSize = is64Bit ? 24 : 16; // Size of each symtab entry. DataBuffer &SymTabBuf = SymTab.SectionData; OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian); if (!is64Bit) { // 32-bit and 64-bit formats are shuffled a bit. for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) { ELFSym &Sym = SymbolTable[i]; SymTabOut.outword(Sym.NameIdx); SymTabOut.outaddr32(Sym.Value); SymTabOut.outword(Sym.Size); SymTabOut.outbyte(Sym.Info); SymTabOut.outbyte(Sym.Other); SymTabOut.outhalf(Sym.SectionIdx); } } else { for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) { ELFSym &Sym = SymbolTable[i]; SymTabOut.outword(Sym.NameIdx); SymTabOut.outbyte(Sym.Info); SymTabOut.outbyte(Sym.Other); SymTabOut.outhalf(Sym.SectionIdx); SymTabOut.outaddr64(Sym.Value); SymTabOut.outxword(Sym.Size); } } SymTab.Size = SymTabBuf.size(); } /// EmitSectionTableStringTable - This method adds and emits a section for the /// ELF Section Table string table: the string table that holds all of the /// section names. void ELFWriter::EmitSectionTableStringTable() { // First step: add the section for the string table to the list of sections: ELFSection &SHStrTab = getSection(".shstrtab", ELFSection::SHT_STRTAB, 0); // Now that we know which section number is the .shstrtab section, update the // e_shstrndx entry in the ELF header. OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian); FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset); // Set the NameIdx of each section in the string table and emit the bytes for // the string table. unsigned Index = 0; DataBuffer &Buf = SHStrTab.SectionData; for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) { // Set the index into the table. Note if we have lots of entries with // common suffixes, we could memoize them here if we cared. I->NameIdx = Index; // Add the name to the output buffer, including the null terminator. Buf.insert(Buf.end(), I->Name.begin(), I->Name.end()); // Add a null terminator. Buf.push_back(0); // Keep track of the number of bytes emitted to this section. Index += I->Name.size()+1; } // Set the size of .shstrtab now that we know what it is. assert(Index == Buf.size()); SHStrTab.Size = Index; } /// OutputSectionsAndSectionTable - Now that we have constructed the file header /// and all of the sections, emit these to the ostream destination and emit the /// SectionTable. void ELFWriter::OutputSectionsAndSectionTable() { // Pass #1: Compute the file offset for each section. size_t FileOff = FileHeader.size(); // File header first. // Emit all of the section data in order. for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) { // Section idx 0 has 0 offset if (!I->SectionIdx) continue; // Update Section size if (!I->Size) I->Size = I->SectionData.size(); // Align FileOff to whatever the alignment restrictions of the section are. if (I->Align) FileOff = (FileOff+I->Align-1) & ~(I->Align-1); I->Offset = FileOff; FileOff += I->Size; } // Align Section Header. unsigned TableAlign = is64Bit ? 8 : 4; FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); // Now that we know where all of the sections will be emitted, set the e_shnum // entry in the ELF header. OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian); FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset); // Now that we know the offset in the file of the section table, update the // e_shoff address in the ELF header. FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset); // Now that we know all of the data in the file header, emit it and all of the // sections! O.write((char*)&FileHeader[0], FileHeader.size()); FileOff = FileHeader.size(); DataBuffer().swap(FileHeader); DataBuffer Table; OutputBuffer TableOut(Table, is64Bit, isLittleEndian); // Emit all of the section data and build the section table itself. while (!SectionList.empty()) { const ELFSection &S = *SectionList.begin(); // Align FileOff to whatever the alignment restrictions of the section are. if (S.Align) for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1); FileOff != NewFileOff; ++FileOff) O << (char)0xAB; O.write((char*)&S.SectionData[0], S.Size); DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name << ", Size: " << S.Size << ", Offset: " << S.Offset << "\n"; FileOff += S.Size; TableOut.outword(S.NameIdx); // sh_name - Symbol table name idx TableOut.outword(S.Type); // sh_type - Section contents & semantics TableOut.outaddr(S.Flags); // sh_flags - Section flags. TableOut.outaddr(S.Addr); // sh_addr - The mem addr this section is in. TableOut.outaddr(S.Offset); // sh_offset - Offset from the file start. TableOut.outaddr(S.Size); // sh_size - The section size. TableOut.outword(S.Link); // sh_link - Section header table index link. TableOut.outword(S.Info); // sh_info - Auxillary information. TableOut.outaddr(S.Align); // sh_addralign - Alignment of section. TableOut.outaddr(S.EntSize); // sh_entsize - Size of entries in the section SectionList.pop_front(); } // Align output for the section table. for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); FileOff != NewFileOff; ++FileOff) O << (char)0xAB; // Emit the section table itself. O.write((char*)&Table[0], Table.size()); }