//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a simple dominator tree walk that eliminates trivially // redundant instructions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/EarlyCSE.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "early-cse" STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd"); STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); STATISTIC(NumCSECall, "Number of call instructions CSE'd"); STATISTIC(NumDSE, "Number of trivial dead stores removed"); //===----------------------------------------------------------------------===// // SimpleValue //===----------------------------------------------------------------------===// namespace { /// \brief Struct representing the available values in the scoped hash table. struct SimpleValue { Instruction *Inst; SimpleValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // This can only handle non-void readnone functions. if (CallInst *CI = dyn_cast(Inst)) return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); return isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst); } }; } namespace llvm { template <> struct DenseMapInfo { static inline SimpleValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline SimpleValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(SimpleValue Val); static bool isEqual(SimpleValue LHS, SimpleValue RHS); }; } unsigned DenseMapInfo::getHashValue(SimpleValue Val) { Instruction *Inst = Val.Inst; // Hash in all of the operands as pointers. if (BinaryOperator *BinOp = dyn_cast(Inst)) { Value *LHS = BinOp->getOperand(0); Value *RHS = BinOp->getOperand(1); if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) std::swap(LHS, RHS); if (isa(BinOp)) { // Hash the overflow behavior unsigned Overflow = BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap; return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); } return hash_combine(BinOp->getOpcode(), LHS, RHS); } if (CmpInst *CI = dyn_cast(Inst)) { Value *LHS = CI->getOperand(0); Value *RHS = CI->getOperand(1); CmpInst::Predicate Pred = CI->getPredicate(); if (Inst->getOperand(0) > Inst->getOperand(1)) { std::swap(LHS, RHS); Pred = CI->getSwappedPredicate(); } return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); } if (CastInst *CI = dyn_cast(Inst)) return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); if (const ExtractValueInst *EVI = dyn_cast(Inst)) return hash_combine(EVI->getOpcode(), EVI->getOperand(0), hash_combine_range(EVI->idx_begin(), EVI->idx_end())); if (const InsertValueInst *IVI = dyn_cast(Inst)) return hash_combine(IVI->getOpcode(), IVI->getOperand(0), IVI->getOperand(1), hash_combine_range(IVI->idx_begin(), IVI->idx_end())); assert((isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst)) && "Invalid/unknown instruction"); // Mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo::isEqual(SimpleValue LHS, SimpleValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; if (LHSI->getOpcode() != RHSI->getOpcode()) return false; if (LHSI->isIdenticalTo(RHSI)) return true; // If we're not strictly identical, we still might be a commutable instruction if (BinaryOperator *LHSBinOp = dyn_cast(LHSI)) { if (!LHSBinOp->isCommutative()) return false; assert(isa(RHSI) && "same opcode, but different instruction type?"); BinaryOperator *RHSBinOp = cast(RHSI); // Check overflow attributes if (isa(LHSBinOp)) { assert(isa(RHSBinOp) && "same opcode, but different operator type?"); if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) return false; } // Commuted equality return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); } if (CmpInst *LHSCmp = dyn_cast(LHSI)) { assert(isa(RHSI) && "same opcode, but different instruction type?"); CmpInst *RHSCmp = cast(RHSI); // Commuted equality return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); } return false; } //===----------------------------------------------------------------------===// // CallValue //===----------------------------------------------------------------------===// namespace { /// \brief Struct representing the available call values in the scoped hash /// table. struct CallValue { Instruction *Inst; CallValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // Don't value number anything that returns void. if (Inst->getType()->isVoidTy()) return false; CallInst *CI = dyn_cast(Inst); if (!CI || !CI->onlyReadsMemory()) return false; return true; } }; } namespace llvm { template <> struct DenseMapInfo { static inline CallValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline CallValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(CallValue Val); static bool isEqual(CallValue LHS, CallValue RHS); }; } unsigned DenseMapInfo::getHashValue(CallValue Val) { Instruction *Inst = Val.Inst; // Hash all of the operands as pointers and mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo::isEqual(CallValue LHS, CallValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; return LHSI->isIdenticalTo(RHSI); } //===----------------------------------------------------------------------===// // EarlyCSE implementation //===----------------------------------------------------------------------===// namespace { /// \brief A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. class EarlyCSE { public: Function &F; const TargetLibraryInfo &TLI; const TargetTransformInfo &TTI; DominatorTree &DT; AssumptionCache &AC; typedef RecyclingAllocator< BumpPtrAllocator, ScopedHashTableVal> AllocatorTy; typedef ScopedHashTable, AllocatorTy> ScopedHTType; /// \brief A scoped hash table of the current values of all of our simple /// scalar expressions. /// /// As we walk down the domtree, we look to see if instructions are in this: /// if so, we replace them with what we find, otherwise we insert them so /// that dominated values can succeed in their lookup. ScopedHTType AvailableValues; /// \brief A scoped hash table of the current values of loads. /// /// This allows us to get efficient access to dominating loads when we have /// a fully redundant load. In addition to the most recent load, we keep /// track of a generation count of the read, which is compared against the /// current generation count. The current generation count is incremented /// after every possibly writing memory operation, which ensures that we only /// CSE loads with other loads that have no intervening store. typedef RecyclingAllocator< BumpPtrAllocator, ScopedHashTableVal>> LoadMapAllocator; typedef ScopedHashTable, DenseMapInfo, LoadMapAllocator> LoadHTType; LoadHTType AvailableLoads; /// \brief A scoped hash table of the current values of read-only call /// values. /// /// It uses the same generation count as loads. typedef ScopedHashTable> CallHTType; CallHTType AvailableCalls; /// \brief This is the current generation of the memory value. unsigned CurrentGeneration; /// \brief Set up the EarlyCSE runner for a particular function. EarlyCSE(Function &F, const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, DominatorTree &DT, AssumptionCache &AC) : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} bool run(); private: // Almost a POD, but needs to call the constructors for the scoped hash // tables so that a new scope gets pushed on. These are RAII so that the // scope gets popped when the NodeScope is destroyed. class NodeScope { public: NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, CallHTType &AvailableCalls) : Scope(AvailableValues), LoadScope(AvailableLoads), CallScope(AvailableCalls) {} private: NodeScope(const NodeScope &) = delete; void operator=(const NodeScope &) = delete; ScopedHTType::ScopeTy Scope; LoadHTType::ScopeTy LoadScope; CallHTType::ScopeTy CallScope; }; // Contains all the needed information to create a stack for doing a depth // first tranversal of the tree. This includes scopes for values, loads, and // calls as well as the generation. There is a child iterator so that the // children do not need to be store spearately. class StackNode { public: StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, DomTreeNode::iterator end) : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), Processed(false) {} // Accessors. unsigned currentGeneration() { return CurrentGeneration; } unsigned childGeneration() { return ChildGeneration; } void childGeneration(unsigned generation) { ChildGeneration = generation; } DomTreeNode *node() { return Node; } DomTreeNode::iterator childIter() { return ChildIter; } DomTreeNode *nextChild() { DomTreeNode *child = *ChildIter; ++ChildIter; return child; } DomTreeNode::iterator end() { return EndIter; } bool isProcessed() { return Processed; } void process() { Processed = true; } private: StackNode(const StackNode &) = delete; void operator=(const StackNode &) = delete; // Members. unsigned CurrentGeneration; unsigned ChildGeneration; DomTreeNode *Node; DomTreeNode::iterator ChildIter; DomTreeNode::iterator EndIter; NodeScope Scopes; bool Processed; }; /// \brief Wrapper class to handle memory instructions, including loads, /// stores and intrinsic loads and stores defined by the target. class ParseMemoryInst { public: ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) : Load(false), Store(false), Vol(false), MayReadFromMemory(false), MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) { MayReadFromMemory = Inst->mayReadFromMemory(); MayWriteToMemory = Inst->mayWriteToMemory(); if (IntrinsicInst *II = dyn_cast(Inst)) { MemIntrinsicInfo Info; if (!TTI.getTgtMemIntrinsic(II, Info)) return; if (Info.NumMemRefs == 1) { Store = Info.WriteMem; Load = Info.ReadMem; MatchingId = Info.MatchingId; MayReadFromMemory = Info.ReadMem; MayWriteToMemory = Info.WriteMem; Vol = Info.Vol; Ptr = Info.PtrVal; } } else if (LoadInst *LI = dyn_cast(Inst)) { Load = true; Vol = !LI->isSimple(); Ptr = LI->getPointerOperand(); } else if (StoreInst *SI = dyn_cast(Inst)) { Store = true; Vol = !SI->isSimple(); Ptr = SI->getPointerOperand(); } } bool isLoad() { return Load; } bool isStore() { return Store; } bool isVolatile() { return Vol; } bool isMatchingMemLoc(const ParseMemoryInst &Inst) { return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId; } bool isValid() { return Ptr != nullptr; } int getMatchingId() { return MatchingId; } Value *getPtr() { return Ptr; } bool mayReadFromMemory() { return MayReadFromMemory; } bool mayWriteToMemory() { return MayWriteToMemory; } private: bool Load; bool Store; bool Vol; bool MayReadFromMemory; bool MayWriteToMemory; // For regular (non-intrinsic) loads/stores, this is set to -1. For // intrinsic loads/stores, the id is retrieved from the corresponding // field in the MemIntrinsicInfo structure. That field contains // non-negative values only. int MatchingId; Value *Ptr; }; bool processNode(DomTreeNode *Node); Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { if (LoadInst *LI = dyn_cast(Inst)) return LI; else if (StoreInst *SI = dyn_cast(Inst)) return SI->getValueOperand(); assert(isa(Inst) && "Instruction not supported"); return TTI.getOrCreateResultFromMemIntrinsic(cast(Inst), ExpectedType); } }; } bool EarlyCSE::processNode(DomTreeNode *Node) { BasicBlock *BB = Node->getBlock(); // If this block has a single predecessor, then the predecessor is the parent // of the domtree node and all of the live out memory values are still current // in this block. If this block has multiple predecessors, then they could // have invalidated the live-out memory values of our parent value. For now, // just be conservative and invalidate memory if this block has multiple // predecessors. if (!BB->getSinglePredecessor()) ++CurrentGeneration; /// LastStore - Keep track of the last non-volatile store that we saw... for /// as long as there in no instruction that reads memory. If we see a store /// to the same location, we delete the dead store. This zaps trivial dead /// stores which can occur in bitfield code among other things. Instruction *LastStore = nullptr; bool Changed = false; const DataLayout &DL = BB->getModule()->getDataLayout(); // See if any instructions in the block can be eliminated. If so, do it. If // not, add them to AvailableValues. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *Inst = I++; // Dead instructions should just be removed. if (isInstructionTriviallyDead(Inst, &TLI)) { DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // Skip assume intrinsics, they don't really have side effects (although // they're marked as such to ensure preservation of control dependencies), // and this pass will not disturb any of the assumption's control // dependencies. if (match(Inst, m_Intrinsic())) { DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); continue; } // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // If this is a simple instruction that we can value number, process it. if (SimpleValue::canHandle(Inst)) { // See if the instruction has an available value. If so, use it. if (Value *V = AvailableValues.lookup(Inst)) { DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumCSE; continue; } // Otherwise, just remember that this value is available. AvailableValues.insert(Inst, Inst); continue; } ParseMemoryInst MemInst(Inst, TTI); // If this is a non-volatile load, process it. if (MemInst.isValid() && MemInst.isLoad()) { // Ignore volatile loads. if (MemInst.isVolatile()) { LastStore = nullptr; // Don't CSE across synchronization boundaries. if (Inst->mayWriteToMemory()) ++CurrentGeneration; continue; } // If we have an available version of this load, and if it is the right // generation, replace this instruction. std::pair InVal = AvailableLoads.lookup(MemInst.getPtr()); if (InVal.first != nullptr && InVal.second == CurrentGeneration) { Value *Op = getOrCreateResult(InVal.first, Inst->getType()); if (Op != nullptr) { DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: " << *InVal.first << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(Op); Inst->eraseFromParent(); Changed = true; ++NumCSELoad; continue; } } // Otherwise, remember that we have this instruction. AvailableLoads.insert(MemInst.getPtr(), std::pair( Inst, CurrentGeneration)); LastStore = nullptr; continue; } // If this instruction may read from memory, forget LastStore. // Load/store intrinsics will indicate both a read and a write to // memory. The target may override this (e.g. so that a store intrinsic // does not read from memory, and thus will be treated the same as a // regular store for commoning purposes). if (Inst->mayReadFromMemory() && !(MemInst.isValid() && !MemInst.mayReadFromMemory())) LastStore = nullptr; // If this is a read-only call, process it. if (CallValue::canHandle(Inst)) { // If we have an available version of this call, and if it is the right // generation, replace this instruction. std::pair InVal = AvailableCalls.lookup(Inst); if (InVal.first != nullptr && InVal.second == CurrentGeneration) { DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: " << *InVal.first << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); Inst->eraseFromParent(); Changed = true; ++NumCSECall; continue; } // Otherwise, remember that we have this instruction. AvailableCalls.insert( Inst, std::pair(Inst, CurrentGeneration)); continue; } // Okay, this isn't something we can CSE at all. Check to see if it is // something that could modify memory. If so, our available memory values // cannot be used so bump the generation count. if (Inst->mayWriteToMemory()) { ++CurrentGeneration; if (MemInst.isValid() && MemInst.isStore()) { // We do a trivial form of DSE if there are two stores to the same // location with no intervening loads. Delete the earlier store. if (LastStore) { ParseMemoryInst LastStoreMemInst(LastStore, TTI); if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " << *Inst << '\n'); LastStore->eraseFromParent(); Changed = true; ++NumDSE; LastStore = nullptr; } // fallthrough - we can exploit information about this store } // Okay, we just invalidated anything we knew about loaded values. Try // to salvage *something* by remembering that the stored value is a live // version of the pointer. It is safe to forward from volatile stores // to non-volatile loads, so we don't have to check for volatility of // the store. AvailableLoads.insert(MemInst.getPtr(), std::pair( Inst, CurrentGeneration)); // Remember that this was the last store we saw for DSE. if (!MemInst.isVolatile()) LastStore = Inst; } } } return Changed; } bool EarlyCSE::run() { // Note, deque is being used here because there is significant performance // gains over vector when the container becomes very large due to the // specific access patterns. For more information see the mailing list // discussion on this: // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html std::deque nodesToProcess; bool Changed = false; // Process the root node. nodesToProcess.push_back(new StackNode( AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); // Save the current generation. unsigned LiveOutGeneration = CurrentGeneration; // Process the stack. while (!nodesToProcess.empty()) { // Grab the first item off the stack. Set the current generation, remove // the node from the stack, and process it. StackNode *NodeToProcess = nodesToProcess.back(); // Initialize class members. CurrentGeneration = NodeToProcess->currentGeneration(); // Check if the node needs to be processed. if (!NodeToProcess->isProcessed()) { // Process the node. Changed |= processNode(NodeToProcess->node()); NodeToProcess->childGeneration(CurrentGeneration); NodeToProcess->process(); } else if (NodeToProcess->childIter() != NodeToProcess->end()) { // Push the next child onto the stack. DomTreeNode *child = NodeToProcess->nextChild(); nodesToProcess.push_back( new StackNode(AvailableValues, AvailableLoads, AvailableCalls, NodeToProcess->childGeneration(), child, child->begin(), child->end())); } else { // It has been processed, and there are no more children to process, // so delete it and pop it off the stack. delete NodeToProcess; nodesToProcess.pop_back(); } } // while (!nodes...) // Reset the current generation. CurrentGeneration = LiveOutGeneration; return Changed; } PreservedAnalyses EarlyCSEPass::run(Function &F, AnalysisManager *AM) { auto &TLI = AM->getResult(F); auto &TTI = AM->getResult(F); auto &DT = AM->getResult(F); auto &AC = AM->getResult(F); EarlyCSE CSE(F, TLI, TTI, DT, AC); if (!CSE.run()) return PreservedAnalyses::all(); // CSE preserves the dominator tree because it doesn't mutate the CFG. // FIXME: Bundle this with other CFG-preservation. PreservedAnalyses PA; PA.preserve(); return PA; } namespace { /// \brief A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. class EarlyCSELegacyPass : public FunctionPass { public: static char ID; EarlyCSELegacyPass() : FunctionPass(ID) { initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipOptnoneFunction(F)) return false; auto &TLI = getAnalysis().getTLI(); auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); auto &AC = getAnalysis().getAssumptionCache(F); EarlyCSE CSE(F, TLI, TTI, DT, AC); return CSE.run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } }; } char EarlyCSELegacyPass::ID = 0; FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)