//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nick Lewycky and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===------------------------------------------------------------------===// // // Path-sensitive optimizer. In a branch where x == y, replace uses of // x with y. Permits further optimization, such as the elimination of // the unreachable call: // // void test(int *p, int *q) // { // if (p != q) // return; // // if (*p != *q) // foo(); // unreachable // } // //===------------------------------------------------------------------===// // // This optimization works by substituting %q for %p when protected by a // conditional that assures us of that fact. Properties are stored as // relationships between two values. // //===------------------------------------------------------------------===// #define DEBUG_TYPE "predsimplify" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include using namespace llvm; typedef DominatorTree::Node DTNodeType; namespace { Statistic<> NumVarsReplaced("predsimplify", "Number of argument substitutions"); Statistic<> NumInstruction("predsimplify", "Number of instructions removed"); Statistic<> NumSwitchCases("predsimplify", "Number of switch cases removed"); Statistic<> NumBranches("predsimplify", "Number of branches made unconditional"); /// Returns true if V1 is a better choice than V2. Note that it is /// not a total ordering. struct compare { bool operator()(Value *V1, Value *V2) const { if (isa(V1)) { if (!isa(V2)) { return true; } } else if (isa(V1)) { if (!isa(V2) && !isa(V2)) { return true; } } if (User *U = dyn_cast(V2)) { for (User::const_op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I) { if (*I == V1) { return true; } } } return false; } }; /// Used for choosing the canonical Value in a synonym set. /// Leaves the better choice in V1. static void order(Value *&V1, Value *&V2) { static compare c; if (c(V2, V1)) std::swap(V1, V2); } /// Similar to EquivalenceClasses, this stores the set of equivalent /// types. Beyond EquivalenceClasses, it allows the user to specify /// which element will act as leader through a StrictWeakOrdering /// function. template class VISIBILITY_HIDDEN Synonyms { std::map mapping; std::vector leaders; StrictWeak swo; public: typedef unsigned iterator; typedef const unsigned const_iterator; // Inspection bool empty() const { return leaders.empty(); } unsigned countLeaders() const { return leaders.size(); } iterator findLeader(ElemTy e) { typename std::map::iterator MI = mapping.find(e); if (MI == mapping.end()) return 0; return MI->second; } const_iterator findLeader(ElemTy e) const { typename std::map::const_iterator MI = mapping.find(e); if (MI == mapping.end()) return 0; return MI->second; } ElemTy &getLeader(iterator I) { assert(I != 0 && "Element zero is out of range."); assert(I <= leaders.size() && "Invalid iterator."); return leaders[I-1]; } const ElemTy &getLeader(const_iterator I) const { assert(I != 0 && "Element zero is out of range."); return leaders[I-1]; } #ifdef DEBUG void debug(std::ostream &os) const { std::set Unique; for (unsigned i = 1, e = leaders.size()+1; i != e; ++i) { Unique.insert(getLeader(i)); os << i << ". " << *getLeader(i) << ": ["; for (std::map::const_iterator I = mapping.begin(), E = mapping.end(); I != E; ++I) { if ((*I).second == i && (*I).first != leaders[i-1]) { os << *(*I).first << " "; } } os << "]\n"; } assert(Unique.size() == leaders.size() && "Duplicate leaders."); for (typename std::map::const_iterator I = mapping.begin(), E = mapping.end(); I != E; ++I) { assert(I->second != 0 && "Zero iterator in mapping."); assert(I->second <= leaders.size() && "Invalid iterator found in mapping."); } } #endif // Mutators /// Combine two sets referring to the same element, inserting the /// elements as needed. Returns a valid iterator iff two already /// existing disjoint synonym sets were combined. The iterator /// points to the removed element. iterator unionSets(ElemTy E1, ElemTy E2) { if (swo(E2, E1)) std::swap(E1, E2); iterator I1 = findLeader(E1), I2 = findLeader(E2); if (!I1 && !I2) { // neither entry is in yet leaders.push_back(E1); I1 = leaders.size(); mapping[E1] = I1; mapping[E2] = I1; return 0; } if (!I1 && I2) { mapping[E1] = I2; std::swap(getLeader(I2), E1); return 0; } if (I1 && !I2) { mapping[E2] = I1; return 0; } if (I1 == I2) return 0; // This is the case where we have two sets, [%a1, %a2, %a3] and // [%p1, %p2, %p3] and someone says that %a2 == %p3. We need to // combine the two synsets. if (I1 > I2) --I1; for (std::map::iterator I = mapping.begin(), E = mapping.end(); I != E; ++I) { if (I->second == I2) I->second = I1; else if (I->second > I2) --I->second; } leaders.erase(leaders.begin() + I2 - 1); return I2; } /// Returns an iterator pointing to the synonym set containing /// element e. If none exists, a new one is created and returned. iterator findOrInsert(ElemTy e) { iterator I = findLeader(e); if (I) return I; leaders.push_back(e); I = leaders.size(); mapping[e] = I; return I; } }; /// Represents the set of equivalent Value*s and provides insertion /// and fast lookup. Also stores the set of inequality relationships. class PropertySet { struct Property; public: class Synonyms union_find; typedef std::vector::iterator PropertyIterator; typedef std::vector::const_iterator ConstPropertyIterator; typedef Synonyms::iterator SynonymIterator; enum Ops { EQ, NE }; Value *canonicalize(Value *V) const { Value *C = lookup(V); return C ? C : V; } Value *lookup(Value *V) const { Synonyms::iterator SI = union_find.findLeader(V); if (!SI) return NULL; return union_find.getLeader(SI); } bool empty() const { return union_find.empty(); } void addEqual(Value *V1, Value *V2) { // If %x = 0. and %y = -0., seteq %x, %y is true, but // copysign(%x) is not the same as copysign(%y). if (V1->getType()->isFloatingPoint()) return; order(V1, V2); if (isa(V2)) return; // refuse to set false == true. DEBUG(std::cerr << "equal: " << *V1 << " and " << *V2 << "\n"); SynonymIterator deleted = union_find.unionSets(V1, V2); if (deleted) { SynonymIterator replacement = union_find.findLeader(V1); // Move Properties for (PropertyIterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { if (I->I1 == deleted) I->I1 = replacement; else if (I->I1 > deleted) --I->I1; if (I->I2 == deleted) I->I2 = replacement; else if (I->I2 > deleted) --I->I2; } } addImpliedProperties(EQ, V1, V2); } void addNotEqual(Value *V1, Value *V2) { // If %x = NAN then seteq %x, %x is false. if (V1->getType()->isFloatingPoint()) return; // For example, %x = setne int 0, 0 causes "0 != 0". if (isa(V1) && isa(V2)) return; DEBUG(std::cerr << "not equal: " << *V1 << " and " << *V2 << "\n"); if (findProperty(NE, V1, V2) != Properties.end()) return; // found. // Add the property. SynonymIterator I1 = union_find.findOrInsert(V1), I2 = union_find.findOrInsert(V2); // Technically this means that the block is unreachable. if (I1 == I2) return; Properties.push_back(Property(NE, I1, I2)); addImpliedProperties(NE, V1, V2); } PropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) { assert(Opcode != EQ && "Can't findProperty on EQ." "Use the lookup method instead."); SynonymIterator I1 = union_find.findLeader(V1), I2 = union_find.findLeader(V2); if (!I1 || !I2) return Properties.end(); return find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2)); } ConstPropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) const { assert(Opcode != EQ && "Can't findProperty on EQ." "Use the lookup method instead."); SynonymIterator I1 = union_find.findLeader(V1), I2 = union_find.findLeader(V2); if (!I1 || !I2) return Properties.end(); return find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2)); } private: // Represents Head OP [Tail1, Tail2, ...] // For example: %x != %a, %x != %b. struct VISIBILITY_HIDDEN Property { typedef Synonyms::iterator Iter; Property(Ops opcode, Iter i1, Iter i2) : Opcode(opcode), I1(i1), I2(i2) { assert(opcode != EQ && "Equality belongs in the synonym set, " "not a property."); } bool operator==(const Property &P) const { return (Opcode == P.Opcode) && ((I1 == P.I1 && I2 == P.I2) || (I1 == P.I2 && I2 == P.I1)); } Ops Opcode; Iter I1, I2; }; void add(Ops Opcode, Value *V1, Value *V2, bool invert) { switch (Opcode) { case EQ: if (invert) addNotEqual(V1, V2); else addEqual(V1, V2); break; case NE: if (invert) addEqual(V1, V2); else addNotEqual(V1, V2); break; default: assert(0 && "Unknown property opcode."); } } // Finds the properties implied by an equivalence and adds them too. // Example: ("seteq %a, %b", true, EQ) --> (%a, %b, EQ) // ("seteq %a, %b", false, EQ) --> (%a, %b, NE) void addImpliedProperties(Ops Opcode, Value *V1, Value *V2) { order(V1, V2); if (BinaryOperator *BO = dyn_cast(V2)) { switch (BO->getOpcode()) { case Instruction::SetEQ: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), false); if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::SetNE: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), false); break; case Instruction::SetLT: case Instruction::SetGT: if (V1 == ConstantBool::True) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::SetLE: case Instruction::SetGE: if (V1 == ConstantBool::False) add(Opcode, BO->getOperand(0), BO->getOperand(1), true); break; case Instruction::And: if (V1 == ConstantBool::True) { add(Opcode, ConstantBool::True, BO->getOperand(0), false); add(Opcode, ConstantBool::True, BO->getOperand(1), false); } break; case Instruction::Or: if (V1 == ConstantBool::False) { add(Opcode, ConstantBool::False, BO->getOperand(0), false); add(Opcode, ConstantBool::False, BO->getOperand(1), false); } break; case Instruction::Xor: if (V1 == ConstantBool::True) { if (BO->getOperand(0) == ConstantBool::True) add(Opcode, ConstantBool::False, BO->getOperand(1), false); if (BO->getOperand(1) == ConstantBool::True) add(Opcode, ConstantBool::False, BO->getOperand(0), false); } if (V1 == ConstantBool::False) { if (BO->getOperand(0) == ConstantBool::True) add(Opcode, ConstantBool::True, BO->getOperand(1), false); if (BO->getOperand(1) == ConstantBool::True) add(Opcode, ConstantBool::True, BO->getOperand(0), false); } break; default: break; } } else if (SelectInst *SI = dyn_cast(V2)) { if (Opcode != EQ && Opcode != NE) return; ConstantBool *True = (Opcode==EQ) ? ConstantBool::True : ConstantBool::False, *False = (Opcode==EQ) ? ConstantBool::False : ConstantBool::True; if (V1 == SI->getTrueValue()) addEqual(SI->getCondition(), True); else if (V1 == SI->getFalseValue()) addEqual(SI->getCondition(), False); else if (Opcode == EQ) assert("Result of select not equal to either value."); } } public: #ifdef DEBUG void debug(std::ostream &os) const { static const char *OpcodeTable[] = { "EQ", "NE" }; unsigned int size = union_find.countLeaders(); union_find.debug(os); for (std::vector::const_iterator I = Properties.begin(), E = Properties.end(); I != E; ++I) { os << (*I).I1 << " " << OpcodeTable[(*I).Opcode] << " " << (*I).I2 << "\n"; assert((*I).I1 <= size && "Invalid property."); assert((*I).I2 <= size && "Invalid property."); } os << "\n"; } #endif std::vector Properties; }; /// PredicateSimplifier - This class is a simplifier that replaces /// one equivalent variable with another. It also tracks what /// can't be equal and will solve setcc instructions when possible. class PredicateSimplifier : public FunctionPass { public: bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const; private: // Try to replace the Use of the instruction with something simpler. Value *resolve(SetCondInst *SCI, const PropertySet &); Value *resolve(BinaryOperator *BO, const PropertySet &); Value *resolve(SelectInst *SI, const PropertySet &); Value *resolve(Value *V, const PropertySet &); // Used by terminator instructions to proceed from the current basic // block to the next. Verifies that "current" dominates "next", // then calls visitBasicBlock. void proceedToSuccessor(PropertySet &CurrentPS, PropertySet &NextPS, DTNodeType *Current, DTNodeType *Next); void proceedToSuccessor(PropertySet &CurrentPS, DTNodeType *Current, DTNodeType *Next); // Visits each instruction in the basic block. void visitBasicBlock(DTNodeType *DTNode, PropertySet &KnownProperties); // Tries to simplify each Instruction and add new properties to // the PropertySet. Returns true if it erase the instruction. void visitInstruction(Instruction *I, DTNodeType *, PropertySet &); // For each instruction, add the properties to KnownProperties. void visit(TerminatorInst *TI, DTNodeType *, PropertySet &); void visit(BranchInst *BI, DTNodeType *, PropertySet &); void visit(SwitchInst *SI, DTNodeType *, PropertySet); void visit(LoadInst *LI, DTNodeType *, PropertySet &); void visit(StoreInst *SI, DTNodeType *, PropertySet &); void visit(BinaryOperator *BO, DTNodeType *, PropertySet &); DominatorTree *DT; bool modified; }; RegisterPass X("predsimplify", "Predicate Simplifier"); } FunctionPass *llvm::createPredicateSimplifierPass() { return new PredicateSimplifier(); } bool PredicateSimplifier::runOnFunction(Function &F) { DT = &getAnalysis(); modified = false; PropertySet KnownProperties; visitBasicBlock(DT->getRootNode(), KnownProperties); return modified; } void PredicateSimplifier::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } // resolve catches cases addProperty won't because it wasn't used as a // condition in the branch, and that visit won't, because the instruction // was defined outside of the scope that the properties apply to. Value *PredicateSimplifier::resolve(SetCondInst *SCI, const PropertySet &KP) { // Attempt to resolve the SetCondInst to a boolean. Value *SCI0 = resolve(SCI->getOperand(0), KP), *SCI1 = resolve(SCI->getOperand(1), KP); ConstantIntegral *CI1 = dyn_cast(SCI0), *CI2 = dyn_cast(SCI1); if (!CI1 || !CI2) { PropertySet::ConstPropertyIterator NE = KP.findProperty(PropertySet::NE, SCI0, SCI1); if (NE != KP.Properties.end()) { switch (SCI->getOpcode()) { case Instruction::SetEQ: return ConstantBool::False; case Instruction::SetNE: return ConstantBool::True; case Instruction::SetLE: case Instruction::SetGE: case Instruction::SetLT: case Instruction::SetGT: break; default: assert(0 && "Unknown opcode in SetCondInst."); break; } } return SCI; } switch(SCI->getOpcode()) { case Instruction::SetLE: case Instruction::SetGE: case Instruction::SetEQ: if (CI1->getRawValue() == CI2->getRawValue()) return ConstantBool::True; else return ConstantBool::False; case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetNE: if (CI1->getRawValue() == CI2->getRawValue()) return ConstantBool::False; else return ConstantBool::True; default: assert(0 && "Unknown opcode in SetContInst."); break; } } Value *PredicateSimplifier::resolve(BinaryOperator *BO, const PropertySet &KP) { if (SetCondInst *SCI = dyn_cast(BO)) return resolve(SCI, KP); Value *lhs = resolve(BO->getOperand(0), KP), *rhs = resolve(BO->getOperand(1), KP); ConstantIntegral *CI1 = dyn_cast(lhs); ConstantIntegral *CI2 = dyn_cast(rhs); if (!CI1 || !CI2) return BO; Value *V = ConstantExpr::get(BO->getOpcode(), CI1, CI2); if (V) return V; return BO; } Value *PredicateSimplifier::resolve(SelectInst *SI, const PropertySet &KP) { Value *Condition = resolve(SI->getCondition(), KP); if (Condition == ConstantBool::True) return resolve(SI->getTrueValue(), KP); else if (Condition == ConstantBool::False) return resolve(SI->getFalseValue(), KP); return SI; } Value *PredicateSimplifier::resolve(Value *V, const PropertySet &KP) { if (isa(V) || isa(V) || KP.empty()) return V; V = KP.canonicalize(V); DEBUG(std::cerr << "peering into " << *V << "\n"); if (BinaryOperator *BO = dyn_cast(V)) return resolve(BO, KP); else if (SelectInst *SI = dyn_cast(V)) return resolve(SI, KP); return V; } void PredicateSimplifier::visitBasicBlock(DTNodeType *DTNode, PropertySet &KnownProperties) { BasicBlock *BB = DTNode->getBlock(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { visitInstruction(I++, DTNode, KnownProperties); } } void PredicateSimplifier::visitInstruction(Instruction *I, DTNodeType *DTNode, PropertySet &KnownProperties) { DEBUG(std::cerr << "Considering instruction " << *I << "\n"); DEBUG(KnownProperties.debug(std::cerr)); // Try to replace the whole instruction. Value *V = resolve(I, KnownProperties); assert(V->getType() == I->getType() && "Instruction type mutated!"); if (V != I) { modified = true; ++NumInstruction; I->replaceAllUsesWith(V); I->eraseFromParent(); return; } // Try to substitute operands. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *Oper = I->getOperand(i); Value *V = resolve(Oper, KnownProperties); assert(V->getType() == Oper->getType() && "Operand type mutated!"); if (V != Oper) { modified = true; ++NumVarsReplaced; DEBUG(std::cerr << "resolving " << *I); I->setOperand(i, V); DEBUG(std::cerr << "into " << *I); } } if (TerminatorInst *TI = dyn_cast(I)) visit(TI, DTNode, KnownProperties); else if (LoadInst *LI = dyn_cast(I)) visit(LI, DTNode, KnownProperties); else if (StoreInst *SI = dyn_cast(I)) visit(SI, DTNode, KnownProperties); else if (BinaryOperator *BO = dyn_cast(I)) visit(BO, DTNode, KnownProperties); } void PredicateSimplifier::proceedToSuccessor(PropertySet &CurrentPS, PropertySet &NextPS, DTNodeType *Current, DTNodeType *Next) { if (Next->getBlock()->getSinglePredecessor() == Current->getBlock()) proceedToSuccessor(NextPS, Current, Next); else proceedToSuccessor(CurrentPS, Current, Next); } void PredicateSimplifier::proceedToSuccessor(PropertySet &KP, DTNodeType *Current, DTNodeType *Next) { if (Current->properlyDominates(Next)) visitBasicBlock(Next, KP); } void PredicateSimplifier::visit(TerminatorInst *TI, DTNodeType *Node, PropertySet &KP) { if (BranchInst *BI = dyn_cast(TI)) { visit(BI, Node, KP); return; } if (SwitchInst *SI = dyn_cast(TI)) { visit(SI, Node, KP); return; } for (unsigned i = 0, E = TI->getNumSuccessors(); i != E; ++i) { BasicBlock *BB = TI->getSuccessor(i); PropertySet KPcopy(KP); proceedToSuccessor(KPcopy, Node, DT->getNode(TI->getSuccessor(i))); } } void PredicateSimplifier::visit(BranchInst *BI, DTNodeType *Node, PropertySet &KP) { if (BI->isUnconditional()) { proceedToSuccessor(KP, Node, DT->getNode(BI->getSuccessor(0))); return; } Value *Condition = BI->getCondition(); BasicBlock *TrueDest = BI->getSuccessor(0), *FalseDest = BI->getSuccessor(1); if (Condition == ConstantBool::True) { FalseDest->removePredecessor(BI->getParent()); BI->setUnconditionalDest(TrueDest); modified = true; ++NumBranches; proceedToSuccessor(KP, Node, DT->getNode(TrueDest)); return; } else if (Condition == ConstantBool::False) { TrueDest->removePredecessor(BI->getParent()); BI->setUnconditionalDest(FalseDest); modified = true; ++NumBranches; proceedToSuccessor(KP, Node, DT->getNode(FalseDest)); return; } PropertySet TrueProperties(KP), FalseProperties(KP); DEBUG(std::cerr << "true set:\n"); TrueProperties.addEqual(ConstantBool::True, Condition); DEBUG(TrueProperties.debug(std::cerr)); DEBUG(std::cerr << "false set:\n"); FalseProperties.addEqual(ConstantBool::False, Condition); DEBUG(FalseProperties.debug(std::cerr)); PropertySet KPcopy(KP); proceedToSuccessor(KP, TrueProperties, Node, DT->getNode(TrueDest)); proceedToSuccessor(KPcopy, FalseProperties, Node, DT->getNode(FalseDest)); } void PredicateSimplifier::visit(SwitchInst *SI, DTNodeType *DTNode, PropertySet KP) { Value *Condition = SI->getCondition(); assert(Condition == KP.canonicalize(Condition) && "Instruction wasn't already canonicalized?"); // If there's an NEProperty covering this SwitchInst, we may be able to // eliminate one of the cases. for (PropertySet::ConstPropertyIterator I = KP.Properties.begin(), E = KP.Properties.end(); I != E; ++I) { if (I->Opcode != PropertySet::NE) continue; Value *V1 = KP.union_find.getLeader(I->I1), *V2 = KP.union_find.getLeader(I->I2); // Find a Property with a ConstantInt on one side and our // Condition on the other. ConstantInt *CI = NULL; if (V1 == Condition) CI = dyn_cast(V2); else if (V2 == Condition) CI = dyn_cast(V1); if (!CI) continue; unsigned i = SI->findCaseValue(CI); if (i != 0) { // zero is reserved for the default case. SI->getSuccessor(i)->removePredecessor(SI->getParent()); SI->removeCase(i); modified = true; ++NumSwitchCases; } } // Set the EQProperty in each of the cases BBs, // and the NEProperties in the default BB. PropertySet DefaultProperties(KP); DTNodeType *Node = DT->getNode(SI->getParent()), *DefaultNode = DT->getNode(SI->getSuccessor(0)); if (!Node->dominates(DefaultNode)) DefaultNode = NULL; for (unsigned I = 1, E = SI->getNumCases(); I < E; ++I) { ConstantInt *CI = SI->getCaseValue(I); BasicBlock *SuccBB = SI->getSuccessor(I); PropertySet copy(KP); if (SuccBB->getSinglePredecessor()) { PropertySet NewProperties(KP); NewProperties.addEqual(Condition, CI); proceedToSuccessor(copy, NewProperties, DTNode, DT->getNode(SuccBB)); } else proceedToSuccessor(copy, DTNode, DT->getNode(SuccBB)); if (DefaultNode) DefaultProperties.addNotEqual(Condition, CI); } if (DefaultNode) proceedToSuccessor(DefaultProperties, DTNode, DefaultNode); } void PredicateSimplifier::visit(LoadInst *LI, DTNodeType *, PropertySet &KP) { Value *Ptr = LI->getPointerOperand(); KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr); } void PredicateSimplifier::visit(StoreInst *SI, DTNodeType *, PropertySet &KP) { Value *Ptr = SI->getPointerOperand(); KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr); } void PredicateSimplifier::visit(BinaryOperator *BO, DTNodeType *, PropertySet &KP) { Instruction::BinaryOps ops = BO->getOpcode(); switch (ops) { case Instruction::Div: case Instruction::Rem: { Value *Divisor = BO->getOperand(1); KP.addNotEqual(Constant::getNullValue(Divisor->getType()), Divisor); break; } default: break; } }