//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces used by SelectionDAG // instruction selection generators. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Selection DAG Type Constraint definitions. // // Note that the semantics of these constraints are hard coded into tblgen. To // modify or add constraints, you have to hack tblgen. // class SDTypeConstraint { int OperandNum = opnum; } // SDTCisVT - The specified operand has exactly this VT. class SDTCisVT : SDTypeConstraint { ValueType VT = vt; } class SDTCisPtrTy : SDTypeConstraint; // SDTCisInt - The specified operand is has integer type. class SDTCisInt : SDTypeConstraint; // SDTCisFP - The specified operand is has floating point type. class SDTCisFP : SDTypeConstraint; // SDTCisSameAs - The two specified operands have identical types. class SDTCisSameAs : SDTypeConstraint { int OtherOperandNum = OtherOp; } // SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is // smaller than the 'Other' operand. class SDTCisVTSmallerThanOp : SDTypeConstraint { int OtherOperandNum = OtherOp; } class SDTCisOpSmallerThanOp : SDTypeConstraint{ int BigOperandNum = BigOp; } /// SDTCisIntVectorOfSameSize - This indicates that ThisOp and OtherOp are /// vector types, and that ThisOp is the result of /// MVT::getIntVectorWithNumElements with the number of elements that ThisOp /// has. class SDTCisIntVectorOfSameSize : SDTypeConstraint { int OtherOpNum = OtherOp; } /// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same /// type as the element type of OtherOp, which is a vector type. class SDTCisEltOfVec : SDTypeConstraint { int OtherOpNum = OtherOp; } //===----------------------------------------------------------------------===// // Selection DAG Type Profile definitions. // // These use the constraints defined above to describe the type requirements of // the various nodes. These are not hard coded into tblgen, allowing targets to // add their own if needed. // // SDTypeProfile - This profile describes the type requirements of a Selection // DAG node. class SDTypeProfile constraints> { int NumResults = numresults; int NumOperands = numoperands; list Constraints = constraints; } // Builtin profiles. def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. def SDTUnaryOp : SDTypeProfile<1, 1, []>; // bitconvert def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> ]>; def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> ]>; def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> ]>; def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> ]>; def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> ]>; def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz SDTCisSameAs<0, 1>, SDTCisInt<0> ]>; def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0> ]>; def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1> ]>; def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc SDTCisSameAs<0, 1>, SDTCisFP<0> ]>; def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1> ]>; def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0> ]>; def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp SDTCisFP<0>, SDTCisInt<1> ]>; def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int SDTCisInt<0>, SDTCisFP<1> ]>; def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, SDTCisVTSmallerThanOp<2, 1> ]>; def SDTSetCC : SDTypeProfile<1, 3, [ // setcc SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> ]>; def SDTSelect : SDTypeProfile<1, 3, [ // select SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> ]>; def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, SDTCisVT<5, OtherVT> ]>; def SDTBr : SDTypeProfile<0, 1, [ // br SDTCisVT<0, OtherVT> ]>; def SDTBrcond : SDTypeProfile<0, 2, [ // brcond SDTCisInt<0>, SDTCisVT<1, OtherVT> ]>; def SDTBrind : SDTypeProfile<0, 1, [ // brind SDTCisPtrTy<0> ]>; def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap def SDTLoad : SDTypeProfile<1, 1, [ // load SDTCisPtrTy<1> ]>; def SDTStore : SDTypeProfile<0, 2, [ // store SDTCisPtrTy<1> ]>; def SDTIStore : SDTypeProfile<1, 3, [ // indexed store SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> ]>; def SDTVecShuffle : SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisIntVectorOfSameSize<3, 0> ]>; def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> ]>; def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> ]>; def STDPrefetch : SDTypeProfile<0, 3, [ // prefetch SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisInt<1> ]>; def STDMemBarrier : SDTypeProfile<0, 5, [ // memory barier SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>, SDTCisInt<0> ]>; def STDAtomic3 : SDTypeProfile<1, 3, [ SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; def STDAtomic2 : SDTypeProfile<1, 2, [ SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; class SDCallSeqStart constraints> : SDTypeProfile<0, 1, constraints>; class SDCallSeqEnd constraints> : SDTypeProfile<0, 2, constraints>; //===----------------------------------------------------------------------===// // Selection DAG Node Properties. // // Note: These are hard coded into tblgen. // class SDNodeProperty; def SDNPCommutative : SDNodeProperty; // X op Y == Y op X def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z) def SDNPHasChain : SDNodeProperty; // R/W chain operand and result def SDNPOutFlag : SDNodeProperty; // Write a flag result def SDNPInFlag : SDNodeProperty; // Read a flag operand def SDNPOptInFlag : SDNodeProperty; // Optionally read a flag operand def SDNPMayStore : SDNodeProperty; // May write to memory, sets 'mayStore'. def SDNPMayLoad : SDNodeProperty; // May read memory, sets 'mayLoad'. def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'. //===----------------------------------------------------------------------===// // Selection DAG Node definitions. // class SDNode props = [], string sdclass = "SDNode"> { string Opcode = opcode; string SDClass = sdclass; list Properties = props; SDTypeProfile TypeProfile = typeprof; } def set; def implicit; def parallel; def node; def srcvalue; def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def add : SDNode<"ISD::ADD" , SDTIntBinOp , [SDNPCommutative, SDNPAssociative]>; def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; def mul : SDNode<"ISD::MUL" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; def and : SDNode<"ISD::AND" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def or : SDNode<"ISD::OR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def xor : SDNode<"ISD::XOR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, [SDNPCommutative, SDNPOutFlag]>; def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, [SDNPCommutative, SDNPOutFlag, SDNPInFlag]>; def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, [SDNPOutFlag]>; def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, [SDNPOutFlag, SDNPInFlag]>; def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>; def cttz : SDNode<"ISD::CTTZ" , SDTIntUnaryOp>; def ctpop : SDNode<"ISD::CTPOP" , SDTIntUnaryOp>; def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; def bitconvert : SDNode<"ISD::BIT_CONVERT", SDTUnaryOp>; def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; def fround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; def fextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; def select : SDNode<"ISD::SELECT" , SDTSelect>; def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; def ret : SDNode<"ISD::RET" , SDTNone, [SDNPHasChain]>; def trap : SDNode<"ISD::TRAP" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def prefetch : SDNode<"ISD::PREFETCH" , STDPrefetch, [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; def membarrier : SDNode<"ISD::MEMBARRIER" , STDMemBarrier, [SDNPHasChain, SDNPSideEffect]>; // Do not use atomic_* directly, use atomic_*_size (see below) def atomic_lcs : SDNode<"ISD::ATOMIC_LCS" , STDAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def atomic_las : SDNode<"ISD::ATOMIC_LAS" , STDAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", STDAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; // Do not use ld, st directly. Use load, extload, sextload, zextload, store, // and truncst (see below). def ld : SDNode<"ISD::LOAD" , SDTLoad, [SDNPHasChain, SDNPMayLoad]>; def st : SDNode<"ISD::STORE" , SDTStore, [SDNPHasChain, SDNPMayStore]>; def ist : SDNode<"ISD::STORE" , SDTIStore, [SDNPHasChain, SDNPMayStore]>; def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, 0, []>, []>; def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, []>; def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; def extract_subreg : SDNode<"ISD::EXTRACT_SUBREG", SDTypeProfile<1, 2, []>>; def insert_subreg : SDNode<"ISD::INSERT_SUBREG", SDTypeProfile<1, 3, []>>; // Nodes for intrinsics, you should use the intrinsic itself and let tblgen use // these internally. Don't reference these directly. def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain]>; def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, [SDNPHasChain]>; def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; //===----------------------------------------------------------------------===// // Selection DAG Condition Codes class CondCode; // ISD::CondCode enums def SETOEQ : CondCode; def SETOGT : CondCode; def SETOGE : CondCode; def SETOLT : CondCode; def SETOLE : CondCode; def SETONE : CondCode; def SETO : CondCode; def SETUO : CondCode; def SETUEQ : CondCode; def SETUGT : CondCode; def SETUGE : CondCode; def SETULT : CondCode; def SETULE : CondCode; def SETUNE : CondCode; def SETEQ : CondCode; def SETGT : CondCode; def SETGE : CondCode; def SETLT : CondCode; def SETLE : CondCode; def SETNE : CondCode; //===----------------------------------------------------------------------===// // Selection DAG Node Transformation Functions. // // This mechanism allows targets to manipulate nodes in the output DAG once a // match has been formed. This is typically used to manipulate immediate // values. // class SDNodeXForm { SDNode Opcode = opc; code XFormFunction = xformFunction; } def NOOP_SDNodeXForm : SDNodeXForm; //===----------------------------------------------------------------------===// // Selection DAG Pattern Fragments. // // Pattern fragments are reusable chunks of dags that match specific things. // They can take arguments and have C++ predicates that control whether they // match. They are intended to make the patterns for common instructions more // compact and readable. // /// PatFrag - Represents a pattern fragment. This can match something on the /// DAG, frame a single node to multiply nested other fragments. /// class PatFrag { dag Operands = ops; dag Fragment = frag; code Predicate = pred; SDNodeXForm OperandTransform = xform; } // PatLeaf's are pattern fragments that have no operands. This is just a helper // to define immediates and other common things concisely. class PatLeaf : PatFrag<(ops), frag, pred, xform>; // Leaf fragments. def vtInt : PatLeaf<(vt), [{ return MVT::isInteger(N->getVT()); }]>; def vtFP : PatLeaf<(vt), [{ return MVT::isFloatingPoint(N->getVT()); }]>; def immAllOnes : PatLeaf<(imm), [{ return N->isAllOnesValue(); }]>; def immAllOnesV: PatLeaf<(build_vector), [{ return ISD::isBuildVectorAllOnes(N); }]>; def immAllOnesV_bc: PatLeaf<(bitconvert), [{ return ISD::isBuildVectorAllOnes(N); }]>; def immAllZerosV: PatLeaf<(build_vector), [{ return ISD::isBuildVectorAllZeros(N); }]>; def immAllZerosV_bc: PatLeaf<(bitconvert), [{ return ISD::isBuildVectorAllZeros(N); }]>; // Other helper fragments. def not : PatFrag<(ops node:$in), (xor node:$in, immAllOnes)>; def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; def vnot_conv : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV_bc)>; def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; // load fragments. def load : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::NON_EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED; return false; }]>; // extending load fragments. def extloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i1; return false; }]>; def extloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i8; return false; }]>; def extloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i16; return false; }]>; def extloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i32; return false; }]>; def extloadf32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::f32; return false; }]>; def extloadf64 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::EXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::f64; return false; }]>; def sextloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::SEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i1; return false; }]>; def sextloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::SEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i8; return false; }]>; def sextloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::SEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i16; return false; }]>; def sextloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::SEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i32; return false; }]>; def zextloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::ZEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i1; return false; }]>; def zextloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::ZEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i8; return false; }]>; def zextloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::ZEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i16; return false; }]>; def zextloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{ if (LoadSDNode *LD = dyn_cast(N)) return LD->getExtensionType() == ISD::ZEXTLOAD && LD->getAddressingMode() == ISD::UNINDEXED && LD->getMemoryVT() == MVT::i32; return false; }]>; // store fragments. def store : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return !ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; // truncstore fragments. def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8 && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16 && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32 && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32 && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f64 && ST->getAddressingMode() == ISD::UNINDEXED; return false; }]>; // indexed store fragments. def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && !ST->isTruncatingStore(); } return false; }]>; def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i1; } return false; }]>; def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8; } return false; }]>; def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16; } return false; }]>; def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32; } return false; }]>; def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32; } return false; }]>; def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (ist node:$val, node:$ptr, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return !ST->isTruncatingStore() && (AM == ISD::POST_INC || AM == ISD::POST_DEC); } return false; }]>; def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::POST_INC || AM == ISD::POST_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i1; } return false; }]>; def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::POST_INC || AM == ISD::POST_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8; } return false; }]>; def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::POST_INC || AM == ISD::POST_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16; } return false; }]>; def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::POST_INC || AM == ISD::POST_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32; } return false; }]>; def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset), [{ if (StoreSDNode *ST = dyn_cast(N)) { ISD::MemIndexedMode AM = ST->getAddressingMode(); return (AM == ISD::POST_INC || AM == ISD::POST_DEC) && ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32; } return false; }]>; //Atomic patterns def atomic_lcs_8 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp), (atomic_lcs node:$ptr, node:$cmp, node:$swp), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i8; return false; }]>; def atomic_lcs_16 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp), (atomic_lcs node:$ptr, node:$cmp, node:$swp), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i16; return false; }]>; def atomic_lcs_32 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp), (atomic_lcs node:$ptr, node:$cmp, node:$swp), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i32; return false; }]>; def atomic_lcs_64 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp), (atomic_lcs node:$ptr, node:$cmp, node:$swp), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i64; return false; }]>; def atomic_las_8 : PatFrag<(ops node:$ptr, node:$inc), (atomic_las node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i8; return false; }]>; def atomic_las_16 : PatFrag<(ops node:$ptr, node:$inc), (atomic_las node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i16; return false; }]>; def atomic_las_32 : PatFrag<(ops node:$ptr, node:$inc), (atomic_las node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i32; return false; }]>; def atomic_las_64 : PatFrag<(ops node:$ptr, node:$inc), (atomic_las node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i64; return false; }]>; def atomic_swap_8 : PatFrag<(ops node:$ptr, node:$inc), (atomic_swap node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i8; return false; }]>; def atomic_swap_16 : PatFrag<(ops node:$ptr, node:$inc), (atomic_swap node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i16; return false; }]>; def atomic_swap_32 : PatFrag<(ops node:$ptr, node:$inc), (atomic_swap node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i32; return false; }]>; def atomic_swap_64 : PatFrag<(ops node:$ptr, node:$inc), (atomic_swap node:$ptr, node:$inc), [{ if (AtomicSDNode* V = dyn_cast(N)) return V->getVT() == MVT::i64; return false; }]>; // setcc convenience fragments. def setoeq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOEQ)>; def setogt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGT)>; def setoge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGE)>; def setolt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLT)>; def setole : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLE)>; def setone : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETONE)>; def seto : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETO)>; def setuo : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUO)>; def setueq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUEQ)>; def setugt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGT)>; def setuge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGE)>; def setult : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULT)>; def setule : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULE)>; def setune : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUNE)>; def seteq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETEQ)>; def setgt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGT)>; def setge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGE)>; def setlt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLT)>; def setle : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLE)>; def setne : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETNE)>; //===----------------------------------------------------------------------===// // Selection DAG Pattern Support. // // Patterns are what are actually matched against the target-flavored // instruction selection DAG. Instructions defined by the target implicitly // define patterns in most cases, but patterns can also be explicitly added when // an operation is defined by a sequence of instructions (e.g. loading a large // immediate value on RISC targets that do not support immediates as large as // their GPRs). // class Pattern resultInstrs> { dag PatternToMatch = patternToMatch; list ResultInstrs = resultInstrs; list Predicates = []; // See class Instruction in Target.td. int AddedComplexity = 0; // See class Instruction in Target.td. } // Pat - A simple (but common) form of a pattern, which produces a simple result // not needing a full list. class Pat : Pattern; //===----------------------------------------------------------------------===// // Complex pattern definitions. // class CPAttribute; // Pass the parent Operand as root to CP function rather // than the root of the sub-DAG def CPAttrParentAsRoot : CPAttribute; // Complex patterns, e.g. X86 addressing mode, requires pattern matching code // in C++. NumOperands is the number of operands returned by the select function; // SelectFunc is the name of the function used to pattern match the max. pattern; // RootNodes are the list of possible root nodes of the sub-dags to match. // e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>; // class ComplexPattern roots = [], list props = [], list attrs = []> { ValueType Ty = ty; int NumOperands = numops; string SelectFunc = fn; list RootNodes = roots; list Properties = props; list Attributes = attrs; } //===----------------------------------------------------------------------===// // Dwarf support. // def SDT_dwarf_loc : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; def dwarf_loc : SDNode<"ISD::DEBUG_LOC", SDT_dwarf_loc,[SDNPHasChain]>; //===----------------------------------------------------------------------===// // Implict value insert subreg support. // // These should match the enum TargetInstrInfo::ImplictVal. def tii_impl_val_undef : PatLeaf<(i32 0)>; def tii_impl_val_zero : PatLeaf<(i32 1)>;