//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines several CodeGen-specific LLVM IR analysis utilties. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Analysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence /// of insertvalue or extractvalue indices that identify a member, return /// the linearized index of the start of the member. /// unsigned llvm::ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex) { // Base case: We're done. if (Indices && Indices == IndicesEnd) return CurIndex; // Given a struct type, recursively traverse the elements. if (StructType *STy = dyn_cast(Ty)) { for (StructType::element_iterator EB = STy->element_begin(), EI = EB, EE = STy->element_end(); EI != EE; ++EI) { if (Indices && *Indices == unsigned(EI - EB)) return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); } return CurIndex; } // Given an array type, recursively traverse the elements. else if (ArrayType *ATy = dyn_cast(Ty)) { Type *EltTy = ATy->getElementType(); for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { if (Indices && *Indices == i) return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); } return CurIndex; } // We haven't found the type we're looking for, so keep searching. return CurIndex + 1; } /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of /// EVTs that represent all the individual underlying /// non-aggregate types that comprise it. /// /// If Offsets is non-null, it points to a vector to be filled in /// with the in-memory offsets of each of the individual values. /// void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, SmallVectorImpl &ValueVTs, SmallVectorImpl *Offsets, uint64_t StartingOffset) { // Given a struct type, recursively traverse the elements. if (StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); for (StructType::element_iterator EB = STy->element_begin(), EI = EB, EE = STy->element_end(); EI != EE; ++EI) ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, StartingOffset + SL->getElementOffset(EI - EB)); return; } // Given an array type, recursively traverse the elements. if (ArrayType *ATy = dyn_cast(Ty)) { Type *EltTy = ATy->getElementType(); uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, StartingOffset + i * EltSize); return; } // Interpret void as zero return values. if (Ty->isVoidTy()) return; // Base case: we can get an EVT for this LLVM IR type. ValueVTs.push_back(TLI.getValueType(Ty)); if (Offsets) Offsets->push_back(StartingOffset); } /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. GlobalVariable *llvm::ExtractTypeInfo(Value *V) { V = V->stripPointerCasts(); GlobalVariable *GV = dyn_cast(V); if (GV && GV->getName() == "llvm.eh.catch.all.value") { assert(GV->hasInitializer() && "The EH catch-all value must have an initializer"); Value *Init = GV->getInitializer(); GV = dyn_cast(Init); if (!GV) V = cast(Init); } assert((GV || isa(V)) && "TypeInfo must be a global variable or NULL"); return GV; } /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being /// processed uses a memory 'm' constraint. bool llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, const TargetLowering &TLI) { for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { InlineAsm::ConstraintInfo &CI = CInfos[i]; for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); if (CType == TargetLowering::C_Memory) return true; } // Indirect operand accesses access memory. if (CI.isIndirect) return true; } return false; } /// getFCmpCondCode - Return the ISD condition code corresponding to /// the given LLVM IR floating-point condition code. This includes /// consideration of global floating-point math flags. /// ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { switch (Pred) { case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; case FCmpInst::FCMP_OGT: return ISD::SETOGT; case FCmpInst::FCMP_OGE: return ISD::SETOGE; case FCmpInst::FCMP_OLT: return ISD::SETOLT; case FCmpInst::FCMP_OLE: return ISD::SETOLE; case FCmpInst::FCMP_ONE: return ISD::SETONE; case FCmpInst::FCMP_ORD: return ISD::SETO; case FCmpInst::FCMP_UNO: return ISD::SETUO; case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; case FCmpInst::FCMP_UGT: return ISD::SETUGT; case FCmpInst::FCMP_UGE: return ISD::SETUGE; case FCmpInst::FCMP_ULT: return ISD::SETULT; case FCmpInst::FCMP_ULE: return ISD::SETULE; case FCmpInst::FCMP_UNE: return ISD::SETUNE; case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; default: llvm_unreachable("Invalid FCmp predicate opcode!"); } } ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { switch (CC) { case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; default: return CC; } } /// getICmpCondCode - Return the ISD condition code corresponding to /// the given LLVM IR integer condition code. /// ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { switch (Pred) { case ICmpInst::ICMP_EQ: return ISD::SETEQ; case ICmpInst::ICMP_NE: return ISD::SETNE; case ICmpInst::ICMP_SLE: return ISD::SETLE; case ICmpInst::ICMP_ULE: return ISD::SETULE; case ICmpInst::ICMP_SGE: return ISD::SETGE; case ICmpInst::ICMP_UGE: return ISD::SETUGE; case ICmpInst::ICMP_SLT: return ISD::SETLT; case ICmpInst::ICMP_ULT: return ISD::SETULT; case ICmpInst::ICMP_SGT: return ISD::SETGT; case ICmpInst::ICMP_UGT: return ISD::SETUGT; default: llvm_unreachable("Invalid ICmp predicate opcode!"); } } static bool isNoopBitcast(Type *T1, Type *T2, const TargetLowering& TLI) { return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || (isa(T1) && isa(T2) && TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); } /// sameNoopInput - Return true if V1 == V2, else if either V1 or V2 is a noop /// (i.e., lowers to no machine code), look through it (and any transitive noop /// operands to it) and check if it has the same noop input value. This is /// used to determine if a tail call can be formed. static bool sameNoopInput(const Value *V1, const Value *V2, SmallVectorImpl &Els1, SmallVectorImpl &Els2, const TargetLowering &TLI) { using std::swap; bool swapParity = false; bool equalEls = Els1 == Els2; while (true) { if ((equalEls && V1 == V2) || isa(V1) || isa(V2)) { if (swapParity) // Revert to original Els1 and Els2 to avoid confusing recursive calls swap(Els1, Els2); return true; } // Try to look through V1; if V1 is not an instruction, it can't be looked // through. const Instruction *I = dyn_cast(V1); const Value *NoopInput = 0; if (I != 0 && I->getNumOperands() > 0) { Value *Op = I->getOperand(0); if (isa(I)) { // Look through truly no-op truncates. if (TLI.isTruncateFree(Op->getType(), I->getType())) NoopInput = Op; } else if (isa(I)) { // Look through truly no-op bitcasts. if (isNoopBitcast(Op->getType(), I->getType(), TLI)) NoopInput = Op; } else if (isa(I)) { // Look through getelementptr if (cast(I)->hasAllZeroIndices()) NoopInput = Op; } else if (isa(I)) { // Look through inttoptr. // Make sure this isn't a truncating or extending cast. We could // support this eventually, but don't bother for now. if (!isa(I->getType()) && TLI.getPointerTy().getSizeInBits() == cast(Op->getType())->getBitWidth()) NoopInput = Op; } else if (isa(I)) { // Look through ptrtoint. // Make sure this isn't a truncating or extending cast. We could // support this eventually, but don't bother for now. if (!isa(I->getType()) && TLI.getPointerTy().getSizeInBits() == cast(I->getType())->getBitWidth()) NoopInput = Op; } else if (isa(I)) { // Look through call for (User::const_op_iterator i = I->op_begin(), // Skip Callee e = I->op_end() - 1; i != e; ++i) { unsigned attrInd = i - I->op_begin() + 1; if (cast(I)->paramHasAttr(attrInd, Attribute::Returned) && !cast(I)->paramHasAttr(attrInd, Attribute::ZExt) && !cast(I)->paramHasAttr(attrInd, Attribute::SExt) && isNoopBitcast((*i)->getType(), I->getType(), TLI)) { NoopInput = *i; break; } } } else if (isa(I)) { // Look through invoke for (User::const_op_iterator i = I->op_begin(), // Skip BB, BB, Callee e = I->op_end() - 3; i != e; ++i) { unsigned attrInd = i - I->op_begin() + 1; if (cast(I)->paramHasAttr(attrInd, Attribute::Returned) && !cast(I)->paramHasAttr(attrInd, Attribute::ZExt) && !cast(I)->paramHasAttr(attrInd, Attribute::SExt) && isNoopBitcast((*i)->getType(), I->getType(), TLI)) { NoopInput = *i; break; } } } } if (NoopInput) { V1 = NoopInput; continue; } // If we already swapped, avoid infinite loop if (swapParity) break; // Otherwise, swap V1<->V2, Els1<->Els2 swap(V1, V2); swap(Els1, Els2); swapParity = !swapParity; } for (unsigned n = 0; n < 2; ++n) { if (isa(V1)) { if (isa(V1->getType())) { // Look through insertvalue unsigned i, e; for (i = 0, e = cast(V1->getType())->getNumElements(); i != e; ++i) { const Value *InScalar = FindInsertedValue(const_cast(V1), i); if (InScalar == 0) break; Els1.push_back(i); if (!sameNoopInput(InScalar, V2, Els1, Els2, TLI)) { Els1.pop_back(); break; } Els1.pop_back(); } if (i == e) { if (swapParity) swap(Els1, Els2); return true; } } } else if (!Els1.empty() && isa(V1)) { const ExtractValueInst *EVI = cast(V1); unsigned i = Els1.back(); // If the scalar value being inserted is an extractvalue of the right // index from the call, then everything is good. if (isa(EVI->getOperand(0)->getType()) && EVI->getNumIndices() == 1 && EVI->getIndices()[0] == i) { // Look through extractvalue Els1.pop_back(); if (sameNoopInput(EVI->getOperand(0), V2, Els1, Els2, TLI)) { Els1.push_back(i); if (swapParity) swap(Els1, Els2); return true; } Els1.push_back(i); } } swap(V1, V2); swap(Els1, Els2); swapParity = !swapParity; } if (swapParity) swap(Els1, Els2); return false; } /// Test if the given instruction is in a position to be optimized /// with a tail-call. This roughly means that it's in a block with /// a return and there's nothing that needs to be scheduled /// between it and the return. /// /// This function only tests target-independent requirements. bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetLowering &TLI) { const Instruction *I = CS.getInstruction(); const BasicBlock *ExitBB = I->getParent(); const TerminatorInst *Term = ExitBB->getTerminator(); const ReturnInst *Ret = dyn_cast(Term); // The block must end in a return statement or unreachable. // // FIXME: Decline tailcall if it's not guaranteed and if the block ends in // an unreachable, for now. The way tailcall optimization is currently // implemented means it will add an epilogue followed by a jump. That is // not profitable. Also, if the callee is a special function (e.g. // longjmp on x86), it can end up causing miscompilation that has not // been fully understood. if (!Ret && (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || !isa(Term))) return false; // If I will have a chain, make sure no other instruction that will have a // chain interposes between I and the return. if (I->mayHaveSideEffects() || I->mayReadFromMemory() || !isSafeToSpeculativelyExecute(I)) for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; --BBI) { if (&*BBI == I) break; // Debug info intrinsics do not get in the way of tail call optimization. if (isa(BBI)) continue; if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || !isSafeToSpeculativelyExecute(BBI)) return false; } // If the block ends with a void return or unreachable, it doesn't matter // what the call's return type is. if (!Ret || Ret->getNumOperands() == 0) return true; // If the return value is undef, it doesn't matter what the call's // return type is. if (isa(Ret->getOperand(0))) return true; // Conservatively require the attributes of the call to match those of // the return. Ignore noalias because it doesn't affect the call sequence. const Function *F = ExitBB->getParent(); AttributeSet CallerAttrs = F->getAttributes(); if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias) != AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias)) return false; // It's not safe to eliminate the sign / zero extension of the return value. if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; // Otherwise, make sure the return value and I have the same value SmallVector Els1, Els2; return sameNoopInput(Ret->getOperand(0), I, Els1, Els2, TLI); }