//===--- DebugInfo.cpp - Debug Information Helper Classes -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the helper classes used to build and interpret debug // information in LLVM IR form. // //===----------------------------------------------------------------------===// #include "llvm/IR/DebugInfo.h" #include "LLVMContextImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::dwarf; //===----------------------------------------------------------------------===// // DIDescriptor //===----------------------------------------------------------------------===// bool DIDescriptor::Verify() const { return DbgNode && (DIDerivedType(DbgNode).Verify() || DICompositeType(DbgNode).Verify() || DIBasicType(DbgNode).Verify() || DIVariable(DbgNode).Verify() || DISubprogram(DbgNode).Verify() || DIGlobalVariable(DbgNode).Verify() || DIFile(DbgNode).Verify() || DICompileUnit(DbgNode).Verify() || DINameSpace(DbgNode).Verify() || DILexicalBlock(DbgNode).Verify() || DILexicalBlockFile(DbgNode).Verify() || DISubrange(DbgNode).Verify() || DIEnumerator(DbgNode).Verify() || DIObjCProperty(DbgNode).Verify() || DITemplateTypeParameter(DbgNode).Verify() || DITemplateValueParameter(DbgNode).Verify() || DIImportedEntity(DbgNode).Verify() || DIExpression(DbgNode).Verify()); } static Value *getField(const MDNode *DbgNode, unsigned Elt) { if (!DbgNode || Elt >= DbgNode->getNumOperands()) return nullptr; return DbgNode->getOperand(Elt); } static MDNode *getNodeField(const MDNode *DbgNode, unsigned Elt) { return dyn_cast_or_null(getField(DbgNode, Elt)); } static StringRef getStringField(const MDNode *DbgNode, unsigned Elt) { if (MDString *MDS = dyn_cast_or_null(getField(DbgNode, Elt))) return MDS->getString(); return StringRef(); } StringRef DIDescriptor::getStringField(unsigned Elt) const { return ::getStringField(DbgNode, Elt); } uint64_t DIDescriptor::getUInt64Field(unsigned Elt) const { if (!DbgNode) return 0; if (Elt < DbgNode->getNumOperands()) if (ConstantInt *CI = dyn_cast_or_null(DbgNode->getOperand(Elt))) return CI->getZExtValue(); return 0; } int64_t DIDescriptor::getInt64Field(unsigned Elt) const { if (!DbgNode) return 0; if (Elt < DbgNode->getNumOperands()) if (ConstantInt *CI = dyn_cast_or_null(DbgNode->getOperand(Elt))) return CI->getSExtValue(); return 0; } DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const { MDNode *Field = getNodeField(DbgNode, Elt); return DIDescriptor(Field); } GlobalVariable *DIDescriptor::getGlobalVariableField(unsigned Elt) const { if (!DbgNode) return nullptr; if (Elt < DbgNode->getNumOperands()) return dyn_cast_or_null(DbgNode->getOperand(Elt)); return nullptr; } Constant *DIDescriptor::getConstantField(unsigned Elt) const { if (!DbgNode) return nullptr; if (Elt < DbgNode->getNumOperands()) return dyn_cast_or_null(DbgNode->getOperand(Elt)); return nullptr; } Function *DIDescriptor::getFunctionField(unsigned Elt) const { if (!DbgNode) return nullptr; if (Elt < DbgNode->getNumOperands()) return dyn_cast_or_null(DbgNode->getOperand(Elt)); return nullptr; } void DIDescriptor::replaceFunctionField(unsigned Elt, Function *F) { if (!DbgNode) return; if (Elt < DbgNode->getNumOperands()) { MDNode *Node = const_cast(DbgNode); Node->replaceOperandWith(Elt, F); } } static unsigned DIVariableInlinedAtIndex = 4; MDNode *DIVariable::getInlinedAt() const { return getNodeField(DbgNode, DIVariableInlinedAtIndex); } /// \brief Return the size reported by the variable's type. unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) { DIType Ty = getType().resolve(Map); // Follow derived types until we reach a type that // reports back a size. while (Ty.isDerivedType() && !Ty.getSizeInBits()) { DIDerivedType DT(&*Ty); Ty = DT.getTypeDerivedFrom().resolve(Map); } assert(Ty.getSizeInBits() && "type with size 0"); return Ty.getSizeInBits(); } uint64_t DIExpression::getElement(unsigned Idx) const { unsigned I = Idx + 1; assert(I < getNumHeaderFields() && "non-existing complex address element requested"); return getHeaderFieldAs(I); } bool DIExpression::isVariablePiece() const { return getNumElements() && getElement(0) == dwarf::DW_OP_piece; } uint64_t DIExpression::getPieceOffset() const { assert(isVariablePiece()); return getElement(1); } uint64_t DIExpression::getPieceSize() const { assert(isVariablePiece()); return getElement(2); } //===----------------------------------------------------------------------===// // Predicates //===----------------------------------------------------------------------===// bool DIDescriptor::isSubroutineType() const { return isCompositeType() && getTag() == dwarf::DW_TAG_subroutine_type; } bool DIDescriptor::isBasicType() const { if (!DbgNode) return false; switch (getTag()) { case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_unspecified_type: return true; default: return false; } } bool DIDescriptor::isDerivedType() const { if (!DbgNode) return false; switch (getTag()) { case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_pointer_type: case dwarf::DW_TAG_ptr_to_member_type: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_rvalue_reference_type: case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_volatile_type: case dwarf::DW_TAG_restrict_type: case dwarf::DW_TAG_member: case dwarf::DW_TAG_inheritance: case dwarf::DW_TAG_friend: return true; default: // CompositeTypes are currently modelled as DerivedTypes. return isCompositeType(); } } bool DIDescriptor::isCompositeType() const { if (!DbgNode) return false; switch (getTag()) { case dwarf::DW_TAG_array_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_subroutine_type: case dwarf::DW_TAG_class_type: return true; default: return false; } } bool DIDescriptor::isVariable() const { if (!DbgNode) return false; switch (getTag()) { case dwarf::DW_TAG_auto_variable: case dwarf::DW_TAG_arg_variable: return true; default: return false; } } bool DIDescriptor::isType() const { return isBasicType() || isCompositeType() || isDerivedType(); } bool DIDescriptor::isSubprogram() const { return DbgNode && getTag() == dwarf::DW_TAG_subprogram; } bool DIDescriptor::isGlobalVariable() const { return DbgNode && (getTag() == dwarf::DW_TAG_variable || getTag() == dwarf::DW_TAG_constant); } bool DIDescriptor::isScope() const { if (!DbgNode) return false; switch (getTag()) { case dwarf::DW_TAG_compile_unit: case dwarf::DW_TAG_lexical_block: case dwarf::DW_TAG_subprogram: case dwarf::DW_TAG_namespace: case dwarf::DW_TAG_file_type: return true; default: break; } return isType(); } bool DIDescriptor::isTemplateTypeParameter() const { return DbgNode && getTag() == dwarf::DW_TAG_template_type_parameter; } bool DIDescriptor::isTemplateValueParameter() const { return DbgNode && (getTag() == dwarf::DW_TAG_template_value_parameter || getTag() == dwarf::DW_TAG_GNU_template_template_param || getTag() == dwarf::DW_TAG_GNU_template_parameter_pack); } bool DIDescriptor::isCompileUnit() const { return DbgNode && getTag() == dwarf::DW_TAG_compile_unit; } bool DIDescriptor::isFile() const { return DbgNode && getTag() == dwarf::DW_TAG_file_type; } bool DIDescriptor::isNameSpace() const { return DbgNode && getTag() == dwarf::DW_TAG_namespace; } bool DIDescriptor::isLexicalBlockFile() const { return DbgNode && getTag() == dwarf::DW_TAG_lexical_block && DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 2; } bool DIDescriptor::isLexicalBlock() const { // FIXME: There are always exactly 4 header fields in DILexicalBlock, but // something relies on this returning true for DILexicalBlockFile. return DbgNode && getTag() == dwarf::DW_TAG_lexical_block && DbgNode->getNumOperands() == 3 && (getNumHeaderFields() == 2 || getNumHeaderFields() == 4); } bool DIDescriptor::isSubrange() const { return DbgNode && getTag() == dwarf::DW_TAG_subrange_type; } bool DIDescriptor::isEnumerator() const { return DbgNode && getTag() == dwarf::DW_TAG_enumerator; } bool DIDescriptor::isObjCProperty() const { return DbgNode && getTag() == dwarf::DW_TAG_APPLE_property; } bool DIDescriptor::isImportedEntity() const { return DbgNode && (getTag() == dwarf::DW_TAG_imported_module || getTag() == dwarf::DW_TAG_imported_declaration); } bool DIDescriptor::isExpression() const { return DbgNode && (getTag() == dwarf::DW_TAG_expression); } //===----------------------------------------------------------------------===// // Simple Descriptor Constructors and other Methods //===----------------------------------------------------------------------===// void DIDescriptor::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) { assert(DbgNode && "Trying to replace an unverified type!"); // Since we use a TrackingVH for the node, its easy for clients to manufacture // legitimate situations where they want to replaceAllUsesWith() on something // which, due to uniquing, has merged with the source. We shield clients from // this detail by allowing a value to be replaced with replaceAllUsesWith() // itself. const MDNode *DN = D; if (DbgNode == DN) { SmallVector Ops(DbgNode->getNumOperands()); for (size_t i = 0; i != Ops.size(); ++i) Ops[i] = DbgNode->getOperand(i); DN = MDNode::get(VMContext, Ops); } MDNode *Node = const_cast(DbgNode); const Value *V = cast_or_null(DN); Node->replaceAllUsesWith(const_cast(V)); MDNode::deleteTemporary(Node); DbgNode = DN; } void DIDescriptor::replaceAllUsesWith(MDNode *D) { assert(DbgNode && "Trying to replace an unverified type!"); assert(DbgNode != D && "This replacement should always happen"); MDNode *Node = const_cast(DbgNode); const MDNode *DN = D; const Value *V = cast_or_null(DN); Node->replaceAllUsesWith(const_cast(V)); MDNode::deleteTemporary(Node); } bool DICompileUnit::Verify() const { if (!isCompileUnit()) return false; // Don't bother verifying the compilation directory or producer string // as those could be empty. if (getFilename().empty()) return false; return DbgNode->getNumOperands() == 7 && getNumHeaderFields() == 8; } bool DIObjCProperty::Verify() const { if (!isObjCProperty()) return false; // Don't worry about the rest of the strings for now. return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 6; } /// \brief Check if a field at position Elt of a MDNode is a MDNode. /// /// We currently allow an empty string and an integer. /// But we don't allow a non-empty string in a MDNode field. static bool fieldIsMDNode(const MDNode *DbgNode, unsigned Elt) { // FIXME: This function should return true, if the field is null or the field // is indeed a MDNode: return !Fld || isa(Fld). Value *Fld = getField(DbgNode, Elt); if (Fld && isa(Fld) && !cast(Fld)->getString().empty()) return false; return true; } /// \brief Check if a field at position Elt of a MDNode is a MDString. static bool fieldIsMDString(const MDNode *DbgNode, unsigned Elt) { Value *Fld = getField(DbgNode, Elt); return !Fld || isa(Fld); } /// \brief Check if a value can be a reference to a type. static bool isTypeRef(const Metadata *MD) { if (!MD) return true; if (auto *S = dyn_cast(MD)) return !S->getString().empty(); if (auto *N = dyn_cast(MD)) return DIType(N).isType(); return false; } /// \brief Check if referenced field might be a type. static bool fieldIsTypeRef(const MDNode *DbgNode, unsigned Elt) { return isTypeRef(dyn_cast_or_null(getField(DbgNode, Elt))); } /// \brief Check if a value can be a ScopeRef. static bool isScopeRef(const Metadata *MD) { if (!MD) return true; if (auto *S = dyn_cast(MD)) return !S->getString().empty(); return isa(MD); } /// \brief Check if a field at position Elt of a MDNode can be a ScopeRef. static bool fieldIsScopeRef(const MDNode *DbgNode, unsigned Elt) { return isScopeRef(dyn_cast_or_null(getField(DbgNode, Elt))); } bool DIType::Verify() const { if (!isType()) return false; // Make sure Context @ field 2 is MDNode. if (!fieldIsScopeRef(DbgNode, 2)) return false; // FIXME: Sink this into the various subclass verifies. uint16_t Tag = getTag(); if (!isBasicType() && Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_pointer_type && Tag != dwarf::DW_TAG_ptr_to_member_type && Tag != dwarf::DW_TAG_reference_type && Tag != dwarf::DW_TAG_rvalue_reference_type && Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_array_type && Tag != dwarf::DW_TAG_enumeration_type && Tag != dwarf::DW_TAG_subroutine_type && Tag != dwarf::DW_TAG_inheritance && Tag != dwarf::DW_TAG_friend && getFilename().empty()) return false; // DIType is abstract, it should be a BasicType, a DerivedType or // a CompositeType. if (isBasicType()) return DIBasicType(DbgNode).Verify(); else if (isCompositeType()) return DICompositeType(DbgNode).Verify(); else if (isDerivedType()) return DIDerivedType(DbgNode).Verify(); else return false; } bool DIBasicType::Verify() const { return isBasicType() && DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 8; } bool DIDerivedType::Verify() const { // Make sure DerivedFrom @ field 3 is TypeRef. if (!fieldIsTypeRef(DbgNode, 3)) return false; if (getTag() == dwarf::DW_TAG_ptr_to_member_type) // Make sure ClassType @ field 4 is a TypeRef. if (!fieldIsTypeRef(DbgNode, 4)) return false; return isDerivedType() && DbgNode->getNumOperands() >= 4 && DbgNode->getNumOperands() <= 8 && getNumHeaderFields() >= 7 && getNumHeaderFields() <= 8; } bool DICompositeType::Verify() const { if (!isCompositeType()) return false; // Make sure DerivedFrom @ field 3 and ContainingType @ field 5 are TypeRef. if (!fieldIsTypeRef(DbgNode, 3)) return false; if (!fieldIsTypeRef(DbgNode, 5)) return false; // Make sure the type identifier at field 7 is MDString, it can be null. if (!fieldIsMDString(DbgNode, 7)) return false; // A subroutine type can't be both & and &&. if (isLValueReference() && isRValueReference()) return false; return DbgNode->getNumOperands() == 8 && getNumHeaderFields() == 8; } bool DISubprogram::Verify() const { if (!isSubprogram()) return false; // Make sure context @ field 2 is a ScopeRef and type @ field 3 is a MDNode. if (!fieldIsScopeRef(DbgNode, 2)) return false; if (!fieldIsMDNode(DbgNode, 3)) return false; // Containing type @ field 4. if (!fieldIsTypeRef(DbgNode, 4)) return false; // A subprogram can't be both & and &&. if (isLValueReference() && isRValueReference()) return false; // If a DISubprogram has an llvm::Function*, then scope chains from all // instructions within the function should lead to this DISubprogram. if (auto *F = getFunction()) { LLVMContext &Ctxt = F->getContext(); for (auto &BB : *F) { for (auto &I : BB) { DebugLoc DL = I.getDebugLoc(); if (DL.isUnknown()) continue; MDNode *Scope = nullptr; MDNode *IA = nullptr; // walk the inlined-at scopes while (DL.getScopeAndInlinedAt(Scope, IA, F->getContext()), IA) DL = DebugLoc::getFromDILocation(IA); DL.getScopeAndInlinedAt(Scope, IA, Ctxt); assert(!IA); while (!DIDescriptor(Scope).isSubprogram()) { DILexicalBlockFile D(Scope); Scope = D.isLexicalBlockFile() ? D.getScope() : DebugLoc::getFromDILexicalBlock(Scope).getScope(Ctxt); } if (!DISubprogram(Scope).describes(F)) return false; } } } return DbgNode->getNumOperands() == 9 && getNumHeaderFields() == 12; } bool DIGlobalVariable::Verify() const { if (!isGlobalVariable()) return false; if (getDisplayName().empty()) return false; // Make sure context @ field 1 is an MDNode. if (!fieldIsMDNode(DbgNode, 1)) return false; // Make sure that type @ field 3 is a DITypeRef. if (!fieldIsTypeRef(DbgNode, 3)) return false; // Make sure StaticDataMemberDeclaration @ field 5 is MDNode. if (!fieldIsMDNode(DbgNode, 5)) return false; return DbgNode->getNumOperands() == 6 && getNumHeaderFields() == 7; } bool DIVariable::Verify() const { if (!isVariable()) return false; // Make sure context @ field 1 is an MDNode. if (!fieldIsMDNode(DbgNode, 1)) return false; // Make sure that type @ field 3 is a DITypeRef. if (!fieldIsTypeRef(DbgNode, 3)) return false; // Check the number of header fields, which is common between complex and // simple variables. if (getNumHeaderFields() != 4) return false; // Variable without an inline location. if (DbgNode->getNumOperands() == 4) return true; // Variable with an inline location. return getInlinedAt() != nullptr && DbgNode->getNumOperands() == 5; } bool DIExpression::Verify() const { // Empty DIExpressions may be represented as a nullptr. if (!DbgNode) return true; return isExpression() && DbgNode->getNumOperands() == 1; } bool DILocation::Verify() const { if (!DbgNode) return false; return DbgNode->getNumOperands() == 4; } bool DINameSpace::Verify() const { if (!isNameSpace()) return false; return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 3; } MDNode *DIFile::getFileNode() const { return getNodeField(DbgNode, 1); } bool DIFile::Verify() const { return isFile() && DbgNode->getNumOperands() == 2; } bool DIEnumerator::Verify() const { return isEnumerator() && DbgNode->getNumOperands() == 1 && getNumHeaderFields() == 3; } bool DISubrange::Verify() const { return isSubrange() && DbgNode->getNumOperands() == 1 && getNumHeaderFields() == 3; } bool DILexicalBlock::Verify() const { return isLexicalBlock() && DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 4; } bool DILexicalBlockFile::Verify() const { return isLexicalBlockFile() && DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 2; } bool DITemplateTypeParameter::Verify() const { return isTemplateTypeParameter() && DbgNode->getNumOperands() == 4 && getNumHeaderFields() == 4; } bool DITemplateValueParameter::Verify() const { return isTemplateValueParameter() && DbgNode->getNumOperands() == 5 && getNumHeaderFields() == 4; } bool DIImportedEntity::Verify() const { return isImportedEntity() && DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 3; } MDNode *DIDerivedType::getObjCProperty() const { return getNodeField(DbgNode, 4); } MDString *DICompositeType::getIdentifier() const { return cast_or_null(getField(DbgNode, 7)); } #ifndef NDEBUG static void VerifySubsetOf(const MDNode *LHS, const MDNode *RHS) { for (unsigned i = 0; i != LHS->getNumOperands(); ++i) { // Skip the 'empty' list (that's a single i32 0, rather than truly empty). if (i == 0 && isa(LHS->getOperand(i))) continue; const MDNode *E = cast(LHS->getOperand(i)); bool found = false; for (unsigned j = 0; !found && j != RHS->getNumOperands(); ++j) found = E == RHS->getOperand(j); assert(found && "Losing a member during member list replacement"); } } #endif void DICompositeType::setArraysHelper(MDNode *Elements, MDNode *TParams) { TrackingVH N(*this); if (Elements) { #ifndef NDEBUG // Check that the new list of members contains all the old members as well. if (const MDNode *El = cast_or_null(N->getOperand(4))) VerifySubsetOf(El, Elements); #endif N->replaceOperandWith(4, Elements); } if (TParams) N->replaceOperandWith(6, TParams); DbgNode = N; } DIScopeRef DIScope::getRef() const { if (!isCompositeType()) return DIScopeRef(*this); DICompositeType DTy(DbgNode); if (!DTy.getIdentifier()) return DIScopeRef(*this); return DIScopeRef(DTy.getIdentifier()); } void DICompositeType::setContainingType(DICompositeType ContainingType) { TrackingVH N(*this); N->replaceOperandWith(5, ContainingType.getRef()); DbgNode = N; } bool DIVariable::isInlinedFnArgument(const Function *CurFn) { assert(CurFn && "Invalid function"); if (!getContext().isSubprogram()) return false; // This variable is not inlined function argument if its scope // does not describe current function. return !DISubprogram(getContext()).describes(CurFn); } bool DISubprogram::describes(const Function *F) { assert(F && "Invalid function"); if (F == getFunction()) return true; StringRef Name = getLinkageName(); if (Name.empty()) Name = getName(); if (F->getName() == Name) return true; return false; } MDNode *DISubprogram::getVariablesNodes() const { return getNodeField(DbgNode, 8); } DIArray DISubprogram::getVariables() const { return DIArray(getNodeField(DbgNode, 8)); } Value *DITemplateValueParameter::getValue() const { return getField(DbgNode, 3); } DIScopeRef DIScope::getContext() const { if (isType()) return DIType(DbgNode).getContext(); if (isSubprogram()) return DIScopeRef(DISubprogram(DbgNode).getContext()); if (isLexicalBlock()) return DIScopeRef(DILexicalBlock(DbgNode).getContext()); if (isLexicalBlockFile()) return DIScopeRef(DILexicalBlockFile(DbgNode).getContext()); if (isNameSpace()) return DIScopeRef(DINameSpace(DbgNode).getContext()); assert((isFile() || isCompileUnit()) && "Unhandled type of scope."); return DIScopeRef(nullptr); } StringRef DIScope::getName() const { if (isType()) return DIType(DbgNode).getName(); if (isSubprogram()) return DISubprogram(DbgNode).getName(); if (isNameSpace()) return DINameSpace(DbgNode).getName(); assert((isLexicalBlock() || isLexicalBlockFile() || isFile() || isCompileUnit()) && "Unhandled type of scope."); return StringRef(); } StringRef DIScope::getFilename() const { if (!DbgNode) return StringRef(); return ::getStringField(getNodeField(DbgNode, 1), 0); } StringRef DIScope::getDirectory() const { if (!DbgNode) return StringRef(); return ::getStringField(getNodeField(DbgNode, 1), 1); } DIArray DICompileUnit::getEnumTypes() const { if (!DbgNode || DbgNode->getNumOperands() < 7) return DIArray(); return DIArray(getNodeField(DbgNode, 2)); } DIArray DICompileUnit::getRetainedTypes() const { if (!DbgNode || DbgNode->getNumOperands() < 7) return DIArray(); return DIArray(getNodeField(DbgNode, 3)); } DIArray DICompileUnit::getSubprograms() const { if (!DbgNode || DbgNode->getNumOperands() < 7) return DIArray(); return DIArray(getNodeField(DbgNode, 4)); } DIArray DICompileUnit::getGlobalVariables() const { if (!DbgNode || DbgNode->getNumOperands() < 7) return DIArray(); return DIArray(getNodeField(DbgNode, 5)); } DIArray DICompileUnit::getImportedEntities() const { if (!DbgNode || DbgNode->getNumOperands() < 7) return DIArray(); return DIArray(getNodeField(DbgNode, 6)); } void DICompileUnit::replaceSubprograms(DIArray Subprograms) { assert(Verify() && "Expected compile unit"); if (Subprograms == getSubprograms()) return; const_cast(DbgNode)->replaceOperandWith(4, Subprograms); } void DICompileUnit::replaceGlobalVariables(DIArray GlobalVariables) { assert(Verify() && "Expected compile unit"); if (GlobalVariables == getGlobalVariables()) return; const_cast(DbgNode)->replaceOperandWith(5, GlobalVariables); } DILocation DILocation::copyWithNewScope(LLVMContext &Ctx, DILexicalBlockFile NewScope) { SmallVector Elts; assert(Verify()); for (unsigned I = 0; I < DbgNode->getNumOperands(); ++I) { if (I != 2) Elts.push_back(DbgNode->getOperand(I)); else Elts.push_back(NewScope); } MDNode *NewDIL = MDNode::get(Ctx, Elts); return DILocation(NewDIL); } unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) { std::pair Key(getFilename().data(), getLineNumber()); return ++Ctx.pImpl->DiscriminatorTable[Key]; } DIVariable llvm::createInlinedVariable(MDNode *DV, MDNode *InlinedScope, LLVMContext &VMContext) { assert(DIVariable(DV).Verify() && "Expected a DIVariable"); if (!InlinedScope) return cleanseInlinedVariable(DV, VMContext); // Insert inlined scope. SmallVector Elts; for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I) Elts.push_back(DV->getOperand(I)); Elts.push_back(InlinedScope); DIVariable Inlined(MDNode::get(VMContext, Elts)); assert(Inlined.Verify() && "Expected to create a DIVariable"); return Inlined; } DIVariable llvm::cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext) { assert(DIVariable(DV).Verify() && "Expected a DIVariable"); if (!DIVariable(DV).getInlinedAt()) return DIVariable(DV); // Remove inlined scope. SmallVector Elts; for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I) Elts.push_back(DV->getOperand(I)); DIVariable Cleansed(MDNode::get(VMContext, Elts)); assert(Cleansed.Verify() && "Expected to create a DIVariable"); return Cleansed; } DISubprogram llvm::getDISubprogram(const MDNode *Scope) { DIDescriptor D(Scope); if (D.isSubprogram()) return DISubprogram(Scope); if (D.isLexicalBlockFile()) return getDISubprogram(DILexicalBlockFile(Scope).getContext()); if (D.isLexicalBlock()) return getDISubprogram(DILexicalBlock(Scope).getContext()); return DISubprogram(); } DISubprogram llvm::getDISubprogram(const Function *F) { // We look for the first instr that has a debug annotation leading back to F. for (auto &BB : *F) { auto Inst = std::find_if(BB.begin(), BB.end(), [](const Instruction &Inst) { return !Inst.getDebugLoc().isUnknown(); }); if (Inst == BB.end()) continue; DebugLoc DLoc = Inst->getDebugLoc(); const MDNode *Scope = DLoc.getScopeNode(F->getParent()->getContext()); DISubprogram Subprogram = getDISubprogram(Scope); return Subprogram.describes(F) ? Subprogram : DISubprogram(); } return DISubprogram(); } DICompositeType llvm::getDICompositeType(DIType T) { if (T.isCompositeType()) return DICompositeType(T); if (T.isDerivedType()) { // This function is currently used by dragonegg and dragonegg does // not generate identifier for types, so using an empty map to resolve // DerivedFrom should be fine. DITypeIdentifierMap EmptyMap; return getDICompositeType( DIDerivedType(T).getTypeDerivedFrom().resolve(EmptyMap)); } return DICompositeType(); } DITypeIdentifierMap llvm::generateDITypeIdentifierMap(const NamedMDNode *CU_Nodes) { DITypeIdentifierMap Map; for (unsigned CUi = 0, CUe = CU_Nodes->getNumOperands(); CUi != CUe; ++CUi) { DICompileUnit CU(CU_Nodes->getOperand(CUi)); DIArray Retain = CU.getRetainedTypes(); for (unsigned Ti = 0, Te = Retain.getNumElements(); Ti != Te; ++Ti) { if (!Retain.getElement(Ti).isCompositeType()) continue; DICompositeType Ty(Retain.getElement(Ti)); if (MDString *TypeId = Ty.getIdentifier()) { // Definition has priority over declaration. // Try to insert (TypeId, Ty) to Map. std::pair P = Map.insert(std::make_pair(TypeId, Ty)); // If TypeId already exists in Map and this is a definition, replace // whatever we had (declaration or definition) with the definition. if (!P.second && !Ty.isForwardDecl()) P.first->second = Ty; } } } return Map; } //===----------------------------------------------------------------------===// // DebugInfoFinder implementations. //===----------------------------------------------------------------------===// void DebugInfoFinder::reset() { CUs.clear(); SPs.clear(); GVs.clear(); TYs.clear(); Scopes.clear(); NodesSeen.clear(); TypeIdentifierMap.clear(); TypeMapInitialized = false; } void DebugInfoFinder::InitializeTypeMap(const Module &M) { if (!TypeMapInitialized) if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) { TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes); TypeMapInitialized = true; } } void DebugInfoFinder::processModule(const Module &M) { InitializeTypeMap(M); if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) { for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit CU(CU_Nodes->getOperand(i)); addCompileUnit(CU); DIArray GVs = CU.getGlobalVariables(); for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) { DIGlobalVariable DIG(GVs.getElement(i)); if (addGlobalVariable(DIG)) { processScope(DIG.getContext()); processType(DIG.getType().resolve(TypeIdentifierMap)); } } DIArray SPs = CU.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) processSubprogram(DISubprogram(SPs.getElement(i))); DIArray EnumTypes = CU.getEnumTypes(); for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) processType(DIType(EnumTypes.getElement(i))); DIArray RetainedTypes = CU.getRetainedTypes(); for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) processType(DIType(RetainedTypes.getElement(i))); DIArray Imports = CU.getImportedEntities(); for (unsigned i = 0, e = Imports.getNumElements(); i != e; ++i) { DIImportedEntity Import = DIImportedEntity(Imports.getElement(i)); DIDescriptor Entity = Import.getEntity().resolve(TypeIdentifierMap); if (Entity.isType()) processType(DIType(Entity)); else if (Entity.isSubprogram()) processSubprogram(DISubprogram(Entity)); else if (Entity.isNameSpace()) processScope(DINameSpace(Entity).getContext()); } } } } void DebugInfoFinder::processLocation(const Module &M, DILocation Loc) { if (!Loc) return; InitializeTypeMap(M); processScope(Loc.getScope()); processLocation(M, Loc.getOrigLocation()); } void DebugInfoFinder::processType(DIType DT) { if (!addType(DT)) return; processScope(DT.getContext().resolve(TypeIdentifierMap)); if (DT.isCompositeType()) { DICompositeType DCT(DT); processType(DCT.getTypeDerivedFrom().resolve(TypeIdentifierMap)); if (DT.isSubroutineType()) { DITypeArray DTA = DISubroutineType(DT).getTypeArray(); for (unsigned i = 0, e = DTA.getNumElements(); i != e; ++i) processType(DTA.getElement(i).resolve(TypeIdentifierMap)); return; } DIArray DA = DCT.getElements(); for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) { DIDescriptor D = DA.getElement(i); if (D.isType()) processType(DIType(D)); else if (D.isSubprogram()) processSubprogram(DISubprogram(D)); } } else if (DT.isDerivedType()) { DIDerivedType DDT(DT); processType(DDT.getTypeDerivedFrom().resolve(TypeIdentifierMap)); } } void DebugInfoFinder::processScope(DIScope Scope) { if (Scope.isType()) { DIType Ty(Scope); processType(Ty); return; } if (Scope.isCompileUnit()) { addCompileUnit(DICompileUnit(Scope)); return; } if (Scope.isSubprogram()) { processSubprogram(DISubprogram(Scope)); return; } if (!addScope(Scope)) return; if (Scope.isLexicalBlock()) { DILexicalBlock LB(Scope); processScope(LB.getContext()); } else if (Scope.isLexicalBlockFile()) { DILexicalBlockFile LBF = DILexicalBlockFile(Scope); processScope(LBF.getScope()); } else if (Scope.isNameSpace()) { DINameSpace NS(Scope); processScope(NS.getContext()); } } void DebugInfoFinder::processSubprogram(DISubprogram SP) { if (!addSubprogram(SP)) return; processScope(SP.getContext().resolve(TypeIdentifierMap)); processType(SP.getType()); DIArray TParams = SP.getTemplateParams(); for (unsigned I = 0, E = TParams.getNumElements(); I != E; ++I) { DIDescriptor Element = TParams.getElement(I); if (Element.isTemplateTypeParameter()) { DITemplateTypeParameter TType(Element); processScope(TType.getContext().resolve(TypeIdentifierMap)); processType(TType.getType().resolve(TypeIdentifierMap)); } else if (Element.isTemplateValueParameter()) { DITemplateValueParameter TVal(Element); processScope(TVal.getContext().resolve(TypeIdentifierMap)); processType(TVal.getType().resolve(TypeIdentifierMap)); } } } void DebugInfoFinder::processDeclare(const Module &M, const DbgDeclareInst *DDI) { MDNode *N = dyn_cast(DDI->getVariable()); if (!N) return; InitializeTypeMap(M); DIDescriptor DV(N); if (!DV.isVariable()) return; if (!NodesSeen.insert(DV).second) return; processScope(DIVariable(N).getContext()); processType(DIVariable(N).getType().resolve(TypeIdentifierMap)); } void DebugInfoFinder::processValue(const Module &M, const DbgValueInst *DVI) { MDNode *N = dyn_cast(DVI->getVariable()); if (!N) return; InitializeTypeMap(M); DIDescriptor DV(N); if (!DV.isVariable()) return; if (!NodesSeen.insert(DV).second) return; processScope(DIVariable(N).getContext()); processType(DIVariable(N).getType().resolve(TypeIdentifierMap)); } bool DebugInfoFinder::addType(DIType DT) { if (!DT) return false; if (!NodesSeen.insert(DT).second) return false; TYs.push_back(DT); return true; } bool DebugInfoFinder::addCompileUnit(DICompileUnit CU) { if (!CU) return false; if (!NodesSeen.insert(CU).second) return false; CUs.push_back(CU); return true; } bool DebugInfoFinder::addGlobalVariable(DIGlobalVariable DIG) { if (!DIG) return false; if (!NodesSeen.insert(DIG).second) return false; GVs.push_back(DIG); return true; } bool DebugInfoFinder::addSubprogram(DISubprogram SP) { if (!SP) return false; if (!NodesSeen.insert(SP).second) return false; SPs.push_back(SP); return true; } bool DebugInfoFinder::addScope(DIScope Scope) { if (!Scope) return false; // FIXME: Ocaml binding generates a scope with no content, we treat it // as null for now. if (Scope->getNumOperands() == 0) return false; if (!NodesSeen.insert(Scope).second) return false; Scopes.push_back(Scope); return true; } //===----------------------------------------------------------------------===// // DIDescriptor: dump routines for all descriptors. //===----------------------------------------------------------------------===// void DIDescriptor::dump() const { print(dbgs()); dbgs() << '\n'; } void DIDescriptor::print(raw_ostream &OS) const { if (!DbgNode) return; if (const char *Tag = dwarf::TagString(getTag())) OS << "[ " << Tag << " ]"; if (this->isSubrange()) { DISubrange(DbgNode).printInternal(OS); } else if (this->isCompileUnit()) { DICompileUnit(DbgNode).printInternal(OS); } else if (this->isFile()) { DIFile(DbgNode).printInternal(OS); } else if (this->isEnumerator()) { DIEnumerator(DbgNode).printInternal(OS); } else if (this->isBasicType()) { DIType(DbgNode).printInternal(OS); } else if (this->isDerivedType()) { DIDerivedType(DbgNode).printInternal(OS); } else if (this->isCompositeType()) { DICompositeType(DbgNode).printInternal(OS); } else if (this->isSubprogram()) { DISubprogram(DbgNode).printInternal(OS); } else if (this->isGlobalVariable()) { DIGlobalVariable(DbgNode).printInternal(OS); } else if (this->isVariable()) { DIVariable(DbgNode).printInternal(OS); } else if (this->isObjCProperty()) { DIObjCProperty(DbgNode).printInternal(OS); } else if (this->isNameSpace()) { DINameSpace(DbgNode).printInternal(OS); } else if (this->isScope()) { DIScope(DbgNode).printInternal(OS); } else if (this->isExpression()) { DIExpression(DbgNode).printInternal(OS); } } void DISubrange::printInternal(raw_ostream &OS) const { int64_t Count = getCount(); if (Count != -1) OS << " [" << getLo() << ", " << Count - 1 << ']'; else OS << " [unbounded]"; } void DIScope::printInternal(raw_ostream &OS) const { OS << " [" << getDirectory() << "/" << getFilename() << ']'; } void DICompileUnit::printInternal(raw_ostream &OS) const { DIScope::printInternal(OS); OS << " ["; unsigned Lang = getLanguage(); if (const char *LangStr = dwarf::LanguageString(Lang)) OS << LangStr; else (OS << "lang 0x").write_hex(Lang); OS << ']'; } void DIEnumerator::printInternal(raw_ostream &OS) const { OS << " [" << getName() << " :: " << getEnumValue() << ']'; } void DIType::printInternal(raw_ostream &OS) const { if (!DbgNode) return; StringRef Res = getName(); if (!Res.empty()) OS << " [" << Res << "]"; // TODO: Print context? OS << " [line " << getLineNumber() << ", size " << getSizeInBits() << ", align " << getAlignInBits() << ", offset " << getOffsetInBits(); if (isBasicType()) if (const char *Enc = dwarf::AttributeEncodingString(DIBasicType(DbgNode).getEncoding())) OS << ", enc " << Enc; OS << "]"; if (isPrivate()) OS << " [private]"; else if (isProtected()) OS << " [protected]"; else if (isPublic()) OS << " [public]"; if (isArtificial()) OS << " [artificial]"; if (isForwardDecl()) OS << " [decl]"; else if (getTag() == dwarf::DW_TAG_structure_type || getTag() == dwarf::DW_TAG_union_type || getTag() == dwarf::DW_TAG_enumeration_type || getTag() == dwarf::DW_TAG_class_type) OS << " [def]"; if (isVector()) OS << " [vector]"; if (isStaticMember()) OS << " [static]"; if (isLValueReference()) OS << " [reference]"; if (isRValueReference()) OS << " [rvalue reference]"; } void DIDerivedType::printInternal(raw_ostream &OS) const { DIType::printInternal(OS); OS << " [from " << getTypeDerivedFrom().getName() << ']'; } void DICompositeType::printInternal(raw_ostream &OS) const { DIType::printInternal(OS); DIArray A = getElements(); OS << " [" << A.getNumElements() << " elements]"; } void DINameSpace::printInternal(raw_ostream &OS) const { StringRef Name = getName(); if (!Name.empty()) OS << " [" << Name << ']'; OS << " [line " << getLineNumber() << ']'; } void DISubprogram::printInternal(raw_ostream &OS) const { // TODO : Print context OS << " [line " << getLineNumber() << ']'; if (isLocalToUnit()) OS << " [local]"; if (isDefinition()) OS << " [def]"; if (getScopeLineNumber() != getLineNumber()) OS << " [scope " << getScopeLineNumber() << "]"; if (isPrivate()) OS << " [private]"; else if (isProtected()) OS << " [protected]"; else if (isPublic()) OS << " [public]"; if (isLValueReference()) OS << " [reference]"; if (isRValueReference()) OS << " [rvalue reference]"; StringRef Res = getName(); if (!Res.empty()) OS << " [" << Res << ']'; } void DIGlobalVariable::printInternal(raw_ostream &OS) const { StringRef Res = getName(); if (!Res.empty()) OS << " [" << Res << ']'; OS << " [line " << getLineNumber() << ']'; // TODO : Print context if (isLocalToUnit()) OS << " [local]"; if (isDefinition()) OS << " [def]"; } void DIVariable::printInternal(raw_ostream &OS) const { StringRef Res = getName(); if (!Res.empty()) OS << " [" << Res << ']'; OS << " [line " << getLineNumber() << ']'; } void DIExpression::printInternal(raw_ostream &OS) const { for (unsigned I = 0; I < getNumElements(); ++I) { uint64_t OpCode = getElement(I); OS << " [" << OperationEncodingString(OpCode); switch (OpCode) { case DW_OP_plus: { OS << " " << getElement(++I); break; } case DW_OP_piece: { unsigned Offset = getElement(++I); unsigned Size = getElement(++I); OS << " offset=" << Offset << ", size=" << Size; break; } case DW_OP_deref: // No arguments. break; default: // Else bail out early. This may be a line table entry. OS << "Unknown]"; return; } OS << "]"; } } void DIObjCProperty::printInternal(raw_ostream &OS) const { StringRef Name = getObjCPropertyName(); if (!Name.empty()) OS << " [" << Name << ']'; OS << " [line " << getLineNumber() << ", properties " << getUnsignedField(6) << ']'; } static void printDebugLoc(DebugLoc DL, raw_ostream &CommentOS, const LLVMContext &Ctx) { if (!DL.isUnknown()) { // Print source line info. DIScope Scope(DL.getScope(Ctx)); assert(Scope.isScope() && "Scope of a DebugLoc should be a DIScope."); // Omit the directory, because it's likely to be long and uninteresting. CommentOS << Scope.getFilename(); CommentOS << ':' << DL.getLine(); if (DL.getCol() != 0) CommentOS << ':' << DL.getCol(); DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); if (!InlinedAtDL.isUnknown()) { CommentOS << " @[ "; printDebugLoc(InlinedAtDL, CommentOS, Ctx); CommentOS << " ]"; } } } void DIVariable::printExtendedName(raw_ostream &OS) const { const LLVMContext &Ctx = DbgNode->getContext(); StringRef Res = getName(); if (!Res.empty()) OS << Res << "," << getLineNumber(); if (MDNode *InlinedAt = getInlinedAt()) { DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); if (!InlinedAtDL.isUnknown()) { OS << " @["; printDebugLoc(InlinedAtDL, OS, Ctx); OS << "]"; } } } template <> DIRef::DIRef(const Metadata *V) : Val(V) { assert(isScopeRef(V) && "DIScopeRef should be a MDString or MDNode"); } template <> DIRef::DIRef(const Metadata *V) : Val(V) { assert(isTypeRef(V) && "DITypeRef should be a MDString or MDNode"); } template <> DIScopeRef DIDescriptor::getFieldAs(unsigned Elt) const { return DIScopeRef(cast_or_null(getField(DbgNode, Elt))); } template <> DITypeRef DIDescriptor::getFieldAs(unsigned Elt) const { return DITypeRef(cast_or_null(getField(DbgNode, Elt))); } bool llvm::StripDebugInfo(Module &M) { bool Changed = false; // Remove all of the calls to the debugger intrinsics, and remove them from // the module. if (Function *Declare = M.getFunction("llvm.dbg.declare")) { while (!Declare->use_empty()) { CallInst *CI = cast(Declare->user_back()); CI->eraseFromParent(); } Declare->eraseFromParent(); Changed = true; } if (Function *DbgVal = M.getFunction("llvm.dbg.value")) { while (!DbgVal->use_empty()) { CallInst *CI = cast(DbgVal->user_back()); CI->eraseFromParent(); } DbgVal->eraseFromParent(); Changed = true; } for (Module::named_metadata_iterator NMI = M.named_metadata_begin(), NME = M.named_metadata_end(); NMI != NME;) { NamedMDNode *NMD = NMI; ++NMI; if (NMD->getName().startswith("llvm.dbg.")) { NMD->eraseFromParent(); Changed = true; } } for (Module::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI) for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { if (!BI->getDebugLoc().isUnknown()) { Changed = true; BI->setDebugLoc(DebugLoc()); } } return Changed; } unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) { Value *Val = M.getModuleFlag("Debug Info Version"); if (!Val) return 0; return cast(Val)->getZExtValue(); } llvm::DenseMap llvm::makeSubprogramMap(const Module &M) { DenseMap R; NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return R; for (MDNode *N : CU_Nodes->operands()) { DICompileUnit CUNode(N); DIArray SPs = CUNode.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) { DISubprogram SP(SPs.getElement(i)); if (Function *F = SP.getFunction()) R.insert(std::make_pair(F, SP)); } } return R; }