//===-- Interpreter.h ------------------------------------------*- C++ -*--===// // // This header file defines the interpreter structure // //===----------------------------------------------------------------------===// #ifndef LLI_INTERPRETER_H #define LLI_INTERPRETER_H // Uncomment this line to enable profiling of structure field accesses. #define PROFILE_STRUCTURE_FIELDS 1 #include "llvm/Module.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "Support/DataTypes.h" #include "llvm/Assembly/CachedWriter.h" extern CachedWriter CW; // Object to accellerate printing of LLVM struct MethodInfo; // Defined in ExecutionAnnotations.h class CallInst; class ReturnInst; class BranchInst; class AllocationInst; typedef uint64_t PointerTy; union GenericValue { bool BoolVal; unsigned char UByteVal; signed char SByteVal; unsigned short UShortVal; signed short ShortVal; unsigned int UIntVal; signed int IntVal; uint64_t ULongVal; int64_t LongVal; double DoubleVal; float FloatVal; PointerTy PointerVal; }; // AllocaHolder - Object to track all of the blocks of memory allocated by // alloca. When the function returns, this object is poped off the execution // stack, which causes the dtor to be run, which frees all the alloca'd memory. // class AllocaHolder { friend class AllocaHolderHandle; std::vector Allocations; unsigned RefCnt; public: AllocaHolder() : RefCnt(0) {} void add(void *mem) { Allocations.push_back(mem); } ~AllocaHolder() { for (unsigned i = 0; i < Allocations.size(); ++i) free(Allocations[i]); } }; // AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into // a vector... // class AllocaHolderHandle { AllocaHolder *H; public: AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; } AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; } ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; } void add(void *mem) { H->add(mem); } }; typedef std::vector ValuePlaneTy; // ExecutionContext struct - This struct represents one stack frame currently // executing. // struct ExecutionContext { Method *CurMethod; // The currently executing method BasicBlock *CurBB; // The currently executing BB BasicBlock::iterator CurInst; // The next instruction to execute MethodInfo *MethInfo; // The MethInfo annotation for the method std::vector Values;// ValuePlanes for each type BasicBlock *PrevBB; // The previous BB or null if in first BB CallInst *Caller; // Holds the call that called subframes. // NULL if main func or debugger invoked fn AllocaHolderHandle Allocas; // Track memory allocated by alloca }; // Interpreter - This class represents the entirety of the interpreter. // class Interpreter { Module *CurMod; // The current Module being executed (0 if none) int ExitCode; // The exit code to be returned by the lli util bool Profile; // Profiling enabled? bool Trace; // Tracing enabled? int CurFrame; // The current stack frame being inspected // The runtime stack of executing code. The top of the stack is the current // method record. std::vector ECStack; public: Interpreter(); inline ~Interpreter() { CW.setModule(0); delete CurMod; } // getExitCode - return the code that should be the exit code for the lli // utility. inline int getExitCode() const { return ExitCode; } // enableProfiling() - Turn profiling on, clear stats? void enableProfiling() { Profile = true; } void enableTracing() { Trace = true; } void handleUserInput(); // User Interation Methods... void loadModule(const std::string &Filename); bool flushModule(); bool callMethod(const std::string &Name); // return true on failure void setBreakpoint(const std::string &Name); void infoValue(const std::string &Name); void print(const std::string &Name); static void print(const Type *Ty, GenericValue V); static void printValue(const Type *Ty, GenericValue V); // Hack until we can parse command line args... bool callMainMethod(const std::string &MainName, const std::vector &InputFilename); void list(); // Do the 'list' command void printStackTrace(); // Do the 'backtrace' command // Code execution methods... void callMethod(Method *Meth, const std::vector &ArgVals); bool executeInstruction(); // Execute one instruction... void stepInstruction(); // Do the 'step' command void nextInstruction(); // Do the 'next' command void run(); // Do the 'run' command void finish(); // Do the 'finish' command // Opcode Implementations void executeCallInst(CallInst *I, ExecutionContext &SF); void executeRetInst(ReturnInst *I, ExecutionContext &SF); void executeBrInst(BranchInst *I, ExecutionContext &SF); void executeAllocInst(AllocationInst *I, ExecutionContext &SF); GenericValue callExternalMethod(Method *Meth, const std::vector &ArgVals); void exitCalled(GenericValue GV); // getCurrentMethod - Return the currently executing method inline Method *getCurrentMethod() const { return CurFrame < 0 ? 0 : ECStack[CurFrame].CurMethod; } // isStopped - Return true if a program is stopped. Return false if no // program is running. // inline bool isStopped() const { return !ECStack.empty(); } private: // Helper functions // getCurrentExecutablePath() - Return the directory that the lli executable // lives in. // std::string getCurrentExecutablePath() const; // printCurrentInstruction - Print out the instruction that the virtual PC is // at, or fail silently if no program is running. // void printCurrentInstruction(); // printStackFrame - Print information about the specified stack frame, or -1 // for the default one. // void printStackFrame(int FrameNo = -1); // LookupMatchingNames - Search the current method namespace, then the global // namespace looking for values that match the specified name. Return ALL // matches to that name. This is obviously slow, and should only be used for // user interaction. // std::vector LookupMatchingNames(const std::string &Name); // ChooseOneOption - Prompt the user to choose among the specified options to // pick one value. If no options are provided, emit an error. If a single // option is provided, just return that option. // Value *ChooseOneOption(const std::string &Name, const std::vector &Opts); void initializeExecutionEngine(); void initializeExternalMethods(); }; #endif