//===-- PPC32CodeEmitter.cpp - JIT Code Emitter for PowerPC32 -----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PowerPC 32-bit CodeEmitter and associated machinery to // JIT-compile bytecode to native PowerPC. // //===----------------------------------------------------------------------===// #include "PPC32TargetMachine.h" #include "PPC32Relocations.h" #include "PowerPC.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" using namespace llvm; namespace { class PPC32CodeEmitter : public MachineFunctionPass { TargetMachine &TM; MachineCodeEmitter &MCE; /// MovePCtoLROffset - When/if we see a MovePCtoLR instruction, we record /// its address in the function into this pointer. void *MovePCtoLROffset; // Tracks which instruction references which BasicBlock std::vector > > BBRefs; // Tracks where each BasicBlock starts std::map BBLocations; /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr /// int getMachineOpValue(MachineInstr &MI, MachineOperand &MO); public: PPC32CodeEmitter(TargetMachine &T, MachineCodeEmitter &M) : TM(T), MCE(M) {} const char *getPassName() const { return "PowerPC Machine Code Emitter"; } /// runOnMachineFunction - emits the given MachineFunction to memory /// bool runOnMachineFunction(MachineFunction &MF); /// emitBasicBlock - emits the given MachineBasicBlock to memory /// void emitBasicBlock(MachineBasicBlock &MBB); /// emitWord - write a 32-bit word to memory at the current PC /// void emitWord(unsigned w) { MCE.emitWord(w); } /// getValueBit - return the particular bit of Val /// unsigned getValueBit(int64_t Val, unsigned bit) { return (Val >> bit) & 1; } /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(MachineInstr &MI); }; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get /// machine code emitted. This uses a MachineCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should returns true if machine code emission is /// not supported. /// bool PPC32TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { // Machine code emitter pass for PowerPC PM.add(new PPC32CodeEmitter(*this, MCE)); // Delete machine code for this function after emitting it PM.add(createMachineCodeDeleter()); return false; } bool PPC32CodeEmitter::runOnMachineFunction(MachineFunction &MF) { MovePCtoLROffset = 0; MCE.startFunction(MF); MCE.emitConstantPool(MF.getConstantPool()); for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) emitBasicBlock(*BB); MCE.finishFunction(MF); // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { intptr_t Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "Fixup @ " << (void*)Ref << " to " << (void*)Location << " in instr: " << *MI); for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (branchTarget * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC int64_t branchTarget = (Location - (long)Ref) >> 2; MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); unsigned fixedInstr = PPC32CodeEmitter::getBinaryCodeForInstr(*MI); MCE.emitWordAt(fixedInstr, Ref); break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void PPC32CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { BBLocations[MBB.getBasicBlock()] = MCE.getCurrentPCValue(); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){ MachineInstr &MI = *I; unsigned Opcode = MI.getOpcode(); switch (MI.getOpcode()) { default: emitWord(getBinaryCodeForInstr(*I)); break; case PPC::IMPLICIT_DEF: break; // pseudo opcode, no side effects case PPC::MovePCtoLR: assert(MovePCtoLROffset == 0 && "Multiple MovePCtoLR instructions in the function?"); MovePCtoLROffset = (void*)(intptr_t)MCE.getCurrentPCValue(); emitWord(0x48000005); // bl 1 break; } } } static unsigned enumRegToMachineReg(unsigned enumReg) { switch (enumReg) { case PPC::R0 : case PPC::F0 : return 0; case PPC::R1 : case PPC::F1 : return 1; case PPC::R2 : case PPC::F2 : return 2; case PPC::R3 : case PPC::F3 : return 3; case PPC::R4 : case PPC::F4 : return 4; case PPC::R5 : case PPC::F5 : return 5; case PPC::R6 : case PPC::F6 : return 6; case PPC::R7 : case PPC::F7 : return 7; case PPC::R8 : case PPC::F8 : return 8; case PPC::R9 : case PPC::F9 : return 9; case PPC::R10: case PPC::F10: return 10; case PPC::R11: case PPC::F11: return 11; case PPC::R12: case PPC::F12: return 12; case PPC::R13: case PPC::F13: return 13; case PPC::R14: case PPC::F14: return 14; case PPC::R15: case PPC::F15: return 15; case PPC::R16: case PPC::F16: return 16; case PPC::R17: case PPC::F17: return 17; case PPC::R18: case PPC::F18: return 18; case PPC::R19: case PPC::F19: return 19; case PPC::R20: case PPC::F20: return 20; case PPC::R21: case PPC::F21: return 21; case PPC::R22: case PPC::F22: return 22; case PPC::R23: case PPC::F23: return 23; case PPC::R24: case PPC::F24: return 24; case PPC::R25: case PPC::F25: return 25; case PPC::R26: case PPC::F26: return 26; case PPC::R27: case PPC::F27: return 27; case PPC::R28: case PPC::F28: return 28; case PPC::R29: case PPC::F29: return 29; case PPC::R30: case PPC::F30: return 30; case PPC::R31: case PPC::F31: return 31; default: std::cerr << "Unhandled reg in enumRegToRealReg!\n"; abort(); } } int PPC32CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isRegister()) { rv = enumRegToMachineReg(MO.getReg()); } else if (MO.isImmediate()) { rv = MO.getImmedValue(); } else if (MO.isGlobalAddress()) { unsigned Reloc; if (MI.getOpcode() == PPC::CALLpcrel) Reloc = PPC::reloc_pcrel_bx; else if (MI.getOpcode() == PPC::LOADHiAddr) { Reloc = PPC::reloc_absolute_loadhi; } else if (MI.getOpcode() == PPC::LA) { Reloc = PPC::reloc_absolute_la; } else { assert(0 && "Unknown instruction for relocation!"); } MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), Reloc, MO.getGlobal(), -((intptr_t)MovePCtoLROffset+4))); } else if (MO.isMachineBasicBlock()) { const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isConstantPoolIndex()) { unsigned index = MO.getConstantPoolIndex(); rv = MCE.getConstantPoolEntryAddress(index); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } // Special treatment for global symbols: constants and vars if ((MO.isConstantPoolIndex() || MO.isGlobalAddress()) && MI.getOpcode() != PPC::CALLpcrel) { unsigned Opcode = MI.getOpcode(); assert(MovePCtoLROffset && "MovePCtoLR not seen yet?"); if (Opcode == PPC::LOADHiAddr) { // LoadHiAddr wants hi16(addr - &MovePCtoLR) rv >>= 16; } else if (Opcode == PPC::LWZ || Opcode == PPC::LA || Opcode == PPC::LFS || Opcode == PPC::LFD) { // These load opcodes want lo16(addr - &MovePCtoLR) rv &= 0xffff; } } return rv; } #include "PPC32GenCodeEmitter.inc"