//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the BUDataStructures class, which represents the // Bottom-Up Interprocedural closure of the data structure graph over the // program. This is useful for applications like pool allocation, but **not** // applications like alias analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure/DataStructure.h" #include "llvm/Analysis/DataStructure/DSGraph.h" #include "llvm/Module.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Timer.h" using namespace llvm; namespace { Statistic<> MaxSCC("budatastructure", "Maximum SCC Size in Call Graph"); Statistic<> NumBUInlines("budatastructures", "Number of graphs inlined"); Statistic<> NumCallEdges("budatastructures", "Number of 'actual' call edges"); RegisterAnalysis X("budatastructure", "Bottom-up Data Structure Analysis"); } /// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node /// contains multiple globals, DSA will never, ever, be able to tell the globals /// apart. Instead of maintaining this information in all of the graphs /// throughout the entire program, store only a single global (the "leader") in /// the graphs, and build equivalence classes for the rest of the globals. static void BuildGlobalECs(DSGraph &GG, std::set &ECGlobals) { DSScalarMap &SM = GG.getScalarMap(); EquivalenceClasses &GlobalECs = SM.getGlobalECs(); for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end(); I != E; ++I) { if (I->getGlobalsList().size() <= 1) continue; // First, build up the equivalence set for this block of globals. const std::vector &GVs = I->getGlobalsList(); GlobalValue *First = GVs[0]; for (unsigned i = 1, e = GVs.size(); i != e; ++i) GlobalECs.unionSets(First, GVs[i]); // Next, get the leader element. assert(First == GlobalECs.getLeaderValue(First) && "First did not end up being the leader?"); // Next, remove all globals from the scalar map that are not the leader. assert(GVs[0] == First && "First had to be at the front!"); for (unsigned i = 1, e = GVs.size(); i != e; ++i) { ECGlobals.insert(GVs[i]); SM.erase(SM.find(GVs[i])); } // Finally, change the global node to only contain the leader. I->clearGlobals(); I->addGlobal(First); } DEBUG(GG.AssertGraphOK()); } /// EliminateUsesOfECGlobals - Once we have determined that some globals are in /// really just equivalent to some other globals, remove the globals from the /// specified DSGraph (if present), and merge any nodes with their leader nodes. static void EliminateUsesOfECGlobals(DSGraph &G, const std::set &ECGlobals) { DSScalarMap &SM = G.getScalarMap(); EquivalenceClasses &GlobalECs = SM.getGlobalECs(); bool MadeChange = false; for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end(); GI != E; ) { GlobalValue *GV = *GI++; if (!ECGlobals.count(GV)) continue; const DSNodeHandle &GVNH = SM[GV]; assert(!GVNH.isNull() && "Global has null NH!?"); // Okay, this global is in some equivalence class. Start by finding the // leader of the class. GlobalValue *Leader = GlobalECs.getLeaderValue(GV); // If the leader isn't already in the graph, insert it into the node // corresponding to GV. if (!SM.global_count(Leader)) { GVNH.getNode()->addGlobal(Leader); SM[Leader] = GVNH; } else { // Otherwise, the leader is in the graph, make sure the nodes are the // merged in the specified graph. const DSNodeHandle &LNH = SM[Leader]; if (LNH.getNode() != GVNH.getNode()) LNH.mergeWith(GVNH); } // Next step, remove the global from the DSNode. GVNH.getNode()->removeGlobal(GV); // Finally, remove the global from the ScalarMap. SM.erase(GV); MadeChange = true; } DEBUG(if(MadeChange) G.AssertGraphOK()); } // run - Calculate the bottom up data structure graphs for each function in the // program. // bool BUDataStructures::runOnModule(Module &M) { LocalDataStructures &LocalDSA = getAnalysis(); GlobalECs = LocalDSA.getGlobalECs(); GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph(), GlobalECs); GlobalsGraph->setPrintAuxCalls(); IndCallGraphMap = new std::map, std::pair > >(); std::vector Stack; hash_map ValMap; unsigned NextID = 1; Function *MainFunc = M.getMainFunction(); if (MainFunc) calculateGraphs(MainFunc, Stack, NextID, ValMap); // Calculate the graphs for any functions that are unreachable from main... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal() && !DSInfo.count(I)) { #ifndef NDEBUG if (MainFunc) std::cerr << "*** Function unreachable from main: " << I->getName() << "\n"; #endif calculateGraphs(I, Stack, NextID, ValMap); // Calculate all graphs. } NumCallEdges += ActualCallees.size(); // If we computed any temporary indcallgraphs, free them now. for (std::map, std::pair > >::iterator I = IndCallGraphMap->begin(), E = IndCallGraphMap->end(); I != E; ++I) { I->second.second.clear(); // Drop arg refs into the graph. delete I->second.first; } delete IndCallGraphMap; // At the end of the bottom-up pass, the globals graph becomes complete. // FIXME: This is not the right way to do this, but it is sorta better than // nothing! In particular, externally visible globals and unresolvable call // nodes at the end of the BU phase should make things that they point to // incomplete in the globals graph. // GlobalsGraph->removeTriviallyDeadNodes(); GlobalsGraph->maskIncompleteMarkers(); // Mark external globals incomplete. GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals); // Grow the equivalence classes for the globals to include anything that we // now know to be aliased. std::set ECGlobals; BuildGlobalECs(*GlobalsGraph, ECGlobals); if (!ECGlobals.empty()) { NamedRegionTimer X("Bottom-UP EC Cleanup"); std::cerr << "Eliminating " << ECGlobals.size() << " EC Globals!\n"; for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) EliminateUsesOfECGlobals(*I->second, ECGlobals); } // Merge the globals variables (not the calls) from the globals graph back // into the main function's graph so that the main function contains all of // the information about global pools and GV usage in the program. if (MainFunc && !MainFunc->isExternal()) { DSGraph &MainGraph = getOrCreateGraph(MainFunc); const DSGraph &GG = *MainGraph.getGlobalsGraph(); ReachabilityCloner RC(MainGraph, GG, DSGraph::DontCloneCallNodes | DSGraph::DontCloneAuxCallNodes); // Clone the global nodes into this graph. for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(), E = GG.getScalarMap().global_end(); I != E; ++I) if (isa(*I)) RC.getClonedNH(GG.getNodeForValue(*I)); MainGraph.maskIncompleteMarkers(); MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs | DSGraph::IgnoreGlobals); } return false; } DSGraph &BUDataStructures::getOrCreateGraph(Function *F) { // Has the graph already been created? DSGraph *&Graph = DSInfo[F]; if (Graph) return *Graph; DSGraph &LocGraph = getAnalysis().getDSGraph(*F); // Steal the local graph. Graph = new DSGraph(GlobalECs, LocGraph.getTargetData()); Graph->spliceFrom(LocGraph); Graph->setGlobalsGraph(GlobalsGraph); Graph->setPrintAuxCalls(); // Start with a copy of the original call sites... Graph->getAuxFunctionCalls() = Graph->getFunctionCalls(); return *Graph; } static bool isVAHackFn(const Function *F) { return F->getName() == "printf" || F->getName() == "sscanf" || F->getName() == "fprintf" || F->getName() == "open" || F->getName() == "sprintf" || F->getName() == "fputs" || F->getName() == "fscanf" || F->getName() == "malloc" || F->getName() == "free"; } static bool isResolvableFunc(const Function* callee) { return !callee->isExternal() || isVAHackFn(callee); } static void GetAllCallees(const DSCallSite &CS, std::vector &Callees) { if (CS.isDirectCall()) { if (isResolvableFunc(CS.getCalleeFunc())) Callees.push_back(CS.getCalleeFunc()); } else if (!CS.getCalleeNode()->isIncomplete()) { // Get all callees. unsigned OldSize = Callees.size(); CS.getCalleeNode()->addFullFunctionList(Callees); // If any of the callees are unresolvable, remove the whole batch! for (unsigned i = OldSize, e = Callees.size(); i != e; ++i) if (!isResolvableFunc(Callees[i])) { Callees.erase(Callees.begin()+OldSize, Callees.end()); return; } } } /// GetAllAuxCallees - Return a list containing all of the resolvable callees in /// the aux list for the specified graph in the Callees vector. static void GetAllAuxCallees(DSGraph &G, std::vector &Callees) { Callees.clear(); for (DSGraph::afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I) GetAllCallees(*I, Callees); } unsigned BUDataStructures::calculateGraphs(Function *F, std::vector &Stack, unsigned &NextID, hash_map &ValMap) { assert(!ValMap.count(F) && "Shouldn't revisit functions!"); unsigned Min = NextID++, MyID = Min; ValMap[F] = Min; Stack.push_back(F); // FIXME! This test should be generalized to be any function that we have // already processed, in the case when there isn't a main or there are // unreachable functions! if (F->isExternal()) { // sprintf, fprintf, sscanf, etc... // No callees! Stack.pop_back(); ValMap[F] = ~0; return Min; } DSGraph &Graph = getOrCreateGraph(F); // Find all callee functions. std::vector CalleeFunctions; GetAllAuxCallees(Graph, CalleeFunctions); // The edges out of the current node are the call site targets... for (unsigned i = 0, e = CalleeFunctions.size(); i != e; ++i) { Function *Callee = CalleeFunctions[i]; unsigned M; // Have we visited the destination function yet? hash_map::iterator It = ValMap.find(Callee); if (It == ValMap.end()) // No, visit it now. M = calculateGraphs(Callee, Stack, NextID, ValMap); else // Yes, get it's number. M = It->second; if (M < Min) Min = M; } assert(ValMap[F] == MyID && "SCC construction assumption wrong!"); if (Min != MyID) return Min; // This is part of a larger SCC! // If this is a new SCC, process it now. if (Stack.back() == F) { // Special case the single "SCC" case here. DEBUG(std::cerr << "Visiting single node SCC #: " << MyID << " fn: " << F->getName() << "\n"); Stack.pop_back(); DSGraph &G = getDSGraph(*F); DEBUG(std::cerr << " [BU] Calculating graph for: " << F->getName()<< "\n"); calculateGraph(G); DEBUG(std::cerr << " [BU] Done inlining: " << F->getName() << " [" << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size() << "]\n"); if (MaxSCC < 1) MaxSCC = 1; // Should we revisit the graph? Only do it if there are now new resolvable // callees. GetAllAuxCallees(Graph, CalleeFunctions); if (!CalleeFunctions.empty()) { ValMap.erase(F); return calculateGraphs(F, Stack, NextID, ValMap); } else { ValMap[F] = ~0U; } return MyID; } else { // SCCFunctions - Keep track of the functions in the current SCC // std::vector SCCGraphs; unsigned SCCSize = 1; Function *NF = Stack.back(); ValMap[NF] = ~0U; DSGraph &SCCGraph = getDSGraph(*NF); // First thing first, collapse all of the DSGraphs into a single graph for // the entire SCC. Splice all of the graphs into one and discard all of the // old graphs. // while (NF != F) { Stack.pop_back(); NF = Stack.back(); ValMap[NF] = ~0U; DSGraph &NFG = getDSGraph(*NF); // Update the Function -> DSG map. for (DSGraph::retnodes_iterator I = NFG.retnodes_begin(), E = NFG.retnodes_end(); I != E; ++I) DSInfo[I->first] = &SCCGraph; SCCGraph.spliceFrom(NFG); delete &NFG; ++SCCSize; } Stack.pop_back(); std::cerr << "Calculating graph for SCC #: " << MyID << " of size: " << SCCSize << "\n"; // Compute the Max SCC Size. if (MaxSCC < SCCSize) MaxSCC = SCCSize; // Clean up the graph before we start inlining a bunch again... SCCGraph.removeDeadNodes(DSGraph::KeepUnreachableGlobals); // Now that we have one big happy family, resolve all of the call sites in // the graph... calculateGraph(SCCGraph); DEBUG(std::cerr << " [BU] Done inlining SCC [" << SCCGraph.getGraphSize() << "+" << SCCGraph.getAuxFunctionCalls().size() << "]\n"); std::cerr << "DONE with SCC #: " << MyID << "\n"; // We never have to revisit "SCC" processed functions... return MyID; } return MyID; // == Min } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void BUDataStructures::releaseMyMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; } DSGraph &BUDataStructures::CreateGraphForExternalFunction(const Function &Fn) { Function *F = const_cast(&Fn); DSGraph *DSG = new DSGraph(GlobalECs, GlobalsGraph->getTargetData()); DSInfo[F] = DSG; DSG->setGlobalsGraph(GlobalsGraph); DSG->setPrintAuxCalls(); // Add function to the graph. DSG->getReturnNodes().insert(std::make_pair(F, DSNodeHandle())); if (F->getName() == "free") { // Taking the address of free. // Free should take a single pointer argument, mark it as heap memory. DSNode *N = new DSNode(0, DSG); N->setHeapNodeMarker(); DSG->getNodeForValue(F->arg_begin()).mergeWith(N); } else { std::cerr << "Unrecognized external function: " << F->getName() << "\n"; abort(); } return *DSG; } void BUDataStructures::calculateGraph(DSGraph &Graph) { // Move our call site list into TempFCs so that inline call sites go into the // new call site list and doesn't invalidate our iterators! std::list TempFCs; std::list &AuxCallsList = Graph.getAuxFunctionCalls(); TempFCs.swap(AuxCallsList); DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes(); bool Printed = false; std::vector CalledFuncs; while (!TempFCs.empty()) { DSCallSite &CS = *TempFCs.begin(); CalledFuncs.clear(); // Fast path for noop calls. Note that we don't care about merging globals // in the callee with nodes in the caller here. if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0) { TempFCs.erase(TempFCs.begin()); continue; } else if (CS.isDirectCall() && isVAHackFn(CS.getCalleeFunc())) { TempFCs.erase(TempFCs.begin()); continue; } GetAllCallees(CS, CalledFuncs); if (CalledFuncs.empty()) { // Remember that we could not resolve this yet! AuxCallsList.splice(AuxCallsList.end(), TempFCs, TempFCs.begin()); continue; } else { DSGraph *GI; Instruction *TheCall = CS.getCallSite().getInstruction(); if (CalledFuncs.size() == 1) { Function *Callee = CalledFuncs[0]; ActualCallees.insert(std::make_pair(TheCall, Callee)); // Get the data structure graph for the called function. GI = &getDSGraph(*Callee); // Graph to inline DEBUG(std::cerr << " Inlining graph for " << Callee->getName()); DEBUG(std::cerr << "[" << GI->getGraphSize() << "+" << GI->getAuxFunctionCalls().size() << "] into '" << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+" << Graph.getAuxFunctionCalls().size() << "]\n"); Graph.mergeInGraph(CS, *Callee, *GI, DSGraph::StripAllocaBit|DSGraph::DontCloneCallNodes); ++NumBUInlines; } else { if (!Printed) std::cerr << "In Fns: " << Graph.getFunctionNames() << "\n"; std::cerr << " calls " << CalledFuncs.size() << " fns from site: " << CS.getCallSite().getInstruction() << " " << *CS.getCallSite().getInstruction(); std::cerr << " Fns ="; unsigned NumPrinted = 0; for (std::vector::iterator I = CalledFuncs.begin(), E = CalledFuncs.end(); I != E; ++I) { if (NumPrinted++ < 8) std::cerr << " " << (*I)->getName(); // Add the call edges to the call graph. ActualCallees.insert(std::make_pair(TheCall, *I)); } std::cerr << "\n"; // See if we already computed a graph for this set of callees. std::sort(CalledFuncs.begin(), CalledFuncs.end()); std::pair > &IndCallGraph = (*IndCallGraphMap)[CalledFuncs]; if (IndCallGraph.first == 0) { std::vector::iterator I = CalledFuncs.begin(), E = CalledFuncs.end(); // Start with a copy of the first graph. GI = IndCallGraph.first = new DSGraph(getDSGraph(**I), GlobalECs); GI->setGlobalsGraph(Graph.getGlobalsGraph()); std::vector &Args = IndCallGraph.second; // Get the argument nodes for the first callee. The return value is // the 0th index in the vector. GI->getFunctionArgumentsForCall(*I, Args); // Merge all of the other callees into this graph. for (++I; I != E; ++I) { // If the graph already contains the nodes for the function, don't // bother merging it in again. if (!GI->containsFunction(*I)) { GI->cloneInto(getDSGraph(**I)); ++NumBUInlines; } std::vector NextArgs; GI->getFunctionArgumentsForCall(*I, NextArgs); unsigned i = 0, e = Args.size(); for (; i != e; ++i) { if (i == NextArgs.size()) break; Args[i].mergeWith(NextArgs[i]); } for (e = NextArgs.size(); i != e; ++i) Args.push_back(NextArgs[i]); } // Clean up the final graph! GI->removeDeadNodes(DSGraph::KeepUnreachableGlobals); } else { std::cerr << "***\n*** RECYCLED GRAPH ***\n***\n"; } GI = IndCallGraph.first; // Merge the unified graph into this graph now. DEBUG(std::cerr << " Inlining multi callee graph " << "[" << GI->getGraphSize() << "+" << GI->getAuxFunctionCalls().size() << "] into '" << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+" << Graph.getAuxFunctionCalls().size() << "]\n"); Graph.mergeInGraph(CS, IndCallGraph.second, *GI, DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes); ++NumBUInlines; } } TempFCs.erase(TempFCs.begin()); } // Recompute the Incomplete markers Graph.maskIncompleteMarkers(); Graph.markIncompleteNodes(DSGraph::MarkFormalArgs); // Delete dead nodes. Treat globals that are unreachable but that can // reach live nodes as live. Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals); // When this graph is finalized, clone the globals in the graph into the // globals graph to make sure it has everything, from all graphs. DSScalarMap &MainSM = Graph.getScalarMap(); ReachabilityCloner RC(*GlobalsGraph, Graph, DSGraph::StripAllocaBit); // Clone everything reachable from globals in the function graph into the // globals graph. for (DSScalarMap::global_iterator I = MainSM.global_begin(), E = MainSM.global_end(); I != E; ++I) RC.getClonedNH(MainSM[*I]); //Graph.writeGraphToFile(std::cerr, "bu_" + F.getName()); } static const Function *getFnForValue(const Value *V) { if (const Instruction *I = dyn_cast(V)) return I->getParent()->getParent(); else if (const Argument *A = dyn_cast(V)) return A->getParent(); else if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent(); return 0; } /// deleteValue/copyValue - Interfaces to update the DSGraphs in the program. /// These correspond to the interfaces defined in the AliasAnalysis class. void BUDataStructures::deleteValue(Value *V) { if (const Function *F = getFnForValue(V)) { // Function local value? // If this is a function local value, just delete it from the scalar map! getDSGraph(*F).getScalarMap().eraseIfExists(V); return; } if (Function *F = dyn_cast(V)) { assert(getDSGraph(*F).getReturnNodes().size() == 1 && "cannot handle scc's"); delete DSInfo[F]; DSInfo.erase(F); return; } assert(!isa(V) && "Do not know how to delete GV's yet!"); } void BUDataStructures::copyValue(Value *From, Value *To) { if (From == To) return; if (const Function *F = getFnForValue(From)) { // Function local value? // If this is a function local value, just delete it from the scalar map! getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To); return; } if (Function *FromF = dyn_cast(From)) { Function *ToF = cast(To); assert(!DSInfo.count(ToF) && "New Function already exists!"); DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs); DSInfo[ToF] = NG; assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!"); // Change the Function* is the returnnodes map to the ToF. DSNodeHandle Ret = NG->retnodes_begin()->second; NG->getReturnNodes().clear(); NG->getReturnNodes()[ToF] = Ret; return; } if (const Function *F = getFnForValue(To)) { DSGraph &G = getDSGraph(*F); G.getScalarMap().copyScalarIfExists(From, To); return; } std::cerr << *From; std::cerr << *To; assert(0 && "Do not know how to copy this yet!"); abort(); }