//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the generic AliasAnalysis interface which is used as the // common interface used by all clients and implementations of alias analysis. // // This file also implements the default version of the AliasAnalysis interface // that is to be used when no other implementation is specified. This does some // simple tests that detect obvious cases: two different global pointers cannot // alias, a global cannot alias a malloc, two different mallocs cannot alias, // etc. // // This alias analysis implementation really isn't very good for anything, but // it is very fast, and makes a nice clean default implementation. Because it // handles lots of little corner cases, other, more complex, alias analysis // implementations may choose to rely on this pass to resolve these simple and // easy cases. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Pass.h" #include "llvm/BasicBlock.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Target/TargetData.h" using namespace llvm; // Register the AliasAnalysis interface, providing a nice name to refer to. namespace { RegisterAnalysisGroup Z("Alias Analysis"); } char AliasAnalysis::ID = 0; //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// AliasAnalysis::AliasResult AliasAnalysis::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->alias(V1, V1Size, V2, V2Size); } void AliasAnalysis::getMustAliases(Value *P, std::vector &RetVals) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->getMustAliases(P, RetVals); } bool AliasAnalysis::pointsToConstantMemory(const Value *P) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->pointsToConstantMemory(P); } AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(Function *F, CallSite CS, std::vector *Info) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->getModRefBehavior(F, CS, Info); } bool AliasAnalysis::hasNoModRefInfoForCalls() const { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->hasNoModRefInfoForCalls(); } void AliasAnalysis::deleteValue(Value *V) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); AA->deleteValue(V); } void AliasAnalysis::copyValue(Value *From, Value *To) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); AA->copyValue(From, To); } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) { // FIXME: we can do better. assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->getModRefInfo(CS1, CS2); } //===----------------------------------------------------------------------===// // AliasAnalysis non-virtual helper method implementation //===----------------------------------------------------------------------===// AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(LoadInst *L, Value *P, unsigned Size) { return alias(L->getOperand(0), TD->getTypeStoreSize(L->getType()), P, Size) ? Ref : NoModRef; } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(StoreInst *S, Value *P, unsigned Size) { // If the stored address cannot alias the pointer in question, then the // pointer cannot be modified by the store. if (!alias(S->getOperand(1), TD->getTypeStoreSize(S->getOperand(0)->getType()), P, Size)) return NoModRef; // If the pointer is a pointer to constant memory, then it could not have been // modified by this store. return pointsToConstantMemory(P) ? NoModRef : Mod; } AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(CallSite CS, std::vector *Info) { if (CS.paramHasAttr(0, ParamAttr::ReadNone)) // Can't do better than this. return DoesNotAccessMemory; ModRefBehavior MRB = UnknownModRefBehavior; if (Function *F = CS.getCalledFunction()) MRB = getModRefBehavior(F, CS, Info); if (MRB != DoesNotAccessMemory && CS.paramHasAttr(0, ParamAttr::ReadOnly)) return OnlyReadsMemory; return MRB; } AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(Function *F, std::vector *Info) { if (F->paramHasAttr(0, ParamAttr::ReadNone)) // Can't do better than this. return DoesNotAccessMemory; ModRefBehavior MRB = getModRefBehavior(F, CallSite(), Info); if (MRB != DoesNotAccessMemory && F->paramHasAttr(0, ParamAttr::ReadOnly)) return OnlyReadsMemory; return MRB; } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { ModRefResult Mask = ModRef; ModRefBehavior MRB = getModRefBehavior(CS); if (MRB == OnlyReadsMemory) Mask = Ref; else if (MRB == DoesNotAccessMemory) return NoModRef; if (!AA) return Mask; // If P points to a constant memory location, the call definitely could not // modify the memory location. if ((Mask & Mod) && AA->pointsToConstantMemory(P)) Mask = ModRefResult(Mask & ~Mod); return ModRefResult(Mask & AA->getModRefInfo(CS, P, Size)); } // AliasAnalysis destructor: DO NOT move this to the header file for // AliasAnalysis or else clients of the AliasAnalysis class may not depend on // the AliasAnalysis.o file in the current .a file, causing alias analysis // support to not be included in the tool correctly! // AliasAnalysis::~AliasAnalysis() {} /// setTargetData - Subclasses must call this method to initialize the /// AliasAnalysis interface before any other methods are called. /// void AliasAnalysis::InitializeAliasAnalysis(Pass *P) { TD = &P->getAnalysis(); AA = &P->getAnalysis(); } // getAnalysisUsage - All alias analysis implementations should invoke this // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that // TargetData is required by the pass. void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); // All AA's need TargetData. AU.addRequired(); // All AA's chain } /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the value pointed to by Ptr. /// bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, const Value *Ptr, unsigned Size) { return canInstructionRangeModify(BB.front(), BB.back(), Ptr, Size); } /// canInstructionRangeModify - Return true if it is possible for the execution /// of the specified instructions to modify the value pointed to by Ptr. The /// instructions to consider are all of the instructions in the range of [I1,I2] /// INCLUSIVE. I1 and I2 must be in the same basic block. /// bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1, const Instruction &I2, const Value *Ptr, unsigned Size) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::iterator I = const_cast(&I1); BasicBlock::iterator E = const_cast(&I2); ++E; // Convert from inclusive to exclusive range. for (; I != E; ++I) // Check every instruction in range if (getModRefInfo(I, const_cast(Ptr), Size) & Mod) return true; return false; } // Because of the way .a files work, we must force the BasicAA implementation to // be pulled in if the AliasAnalysis classes are pulled in. Otherwise we run // the risk of AliasAnalysis being used, but the default implementation not // being linked into the tool that uses it. DEFINING_FILE_FOR(AliasAnalysis)