//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Assembly/Writer.h // // Note that these routines must be extremely tolerant of various errors in the // LLVM code, because it can be used for debugging transformations. // //===----------------------------------------------------------------------===// #include "llvm/Assembly/CachedWriter.h" #include "llvm/Assembly/Writer.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instruction.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; namespace llvm { /// This class provides computation of slot numbers for LLVM Assembly writing. /// @brief LLVM Assembly Writing Slot Computation. class SlotMachine { /// @name Types /// @{ public: /// @brief A mapping of Values to slot numbers typedef std::map ValueMap; typedef std::map TypeMap; /// @brief A plane with next slot number and ValueMap struct ValuePlane { unsigned next_slot; ///< The next slot number to use ValueMap map; ///< The map of Value* -> unsigned ValuePlane() { next_slot = 0; } ///< Make sure we start at 0 }; struct TypePlane { unsigned next_slot; TypeMap map; TypePlane() { next_slot = 0; } void clear() { map.clear(); next_slot = 0; } }; /// @brief The map of planes by Type typedef std::map TypedPlanes; /// @} /// @name Constructors /// @{ public: /// @brief Construct from a module SlotMachine(const Module *M ); /// @brief Construct from a function, starting out in incorp state. SlotMachine(const Function *F ); /// @} /// @name Accessors /// @{ public: /// Return the slot number of the specified value in it's type /// plane. Its an error to ask for something not in the SlotMachine. /// Its an error to ask for a Type* int getSlot(const Value *V); int getSlot(const Type*Ty); /// Determine if a Value has a slot or not bool hasSlot(const Value* V); bool hasSlot(const Type* Ty); /// @} /// @name Mutators /// @{ public: /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotMachine. void incorporateFunction(const Function *F) { TheFunction = F; FunctionProcessed = false; } /// After calling incorporateFunction, use this method to remove the /// most recently incorporated function from the SlotMachine. This /// will reset the state of the machine back to just the module contents. void purgeFunction(); /// @} /// @name Implementation Details /// @{ private: /// This function does the actual initialization. inline void initialize(); /// Values can be crammed into here at will. If they haven't /// been inserted already, they get inserted, otherwise they are ignored. /// Either way, the slot number for the Value* is returned. unsigned createSlot(const Value *V); unsigned createSlot(const Type* Ty); /// Insert a value into the value table. Return the slot number /// that it now occupies. BadThings(TM) will happen if you insert a /// Value that's already been inserted. unsigned insertValue( const Value *V ); unsigned insertValue( const Type* Ty); /// Add all of the module level global variables (and their initializers) /// and function declarations, but not the contents of those functions. void processModule(); /// Add all of the functions arguments, basic blocks, and instructions void processFunction(); SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT void operator=(const SlotMachine &); // DO NOT IMPLEMENT /// @} /// @name Data /// @{ public: /// @brief The module for which we are holding slot numbers const Module* TheModule; /// @brief The function for which we are holding slot numbers const Function* TheFunction; bool FunctionProcessed; /// @brief The TypePlanes map for the module level data TypedPlanes mMap; TypePlane mTypes; /// @brief The TypePlanes map for the function level data TypedPlanes fMap; TypePlane fTypes; /// @} }; } // end namespace llvm static RegisterPass X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization); static RegisterPass Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization); static void WriteAsOperandInternal(std::ostream &Out, const Value *V, bool PrintName, std::map &TypeTable, SlotMachine *Machine); static void WriteAsOperandInternal(std::ostream &Out, const Type *T, bool PrintName, std::map &TypeTable, SlotMachine *Machine); static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; else if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; else if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; } else if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); return 0; } static SlotMachine *createSlotMachine(const Value *V) { if (const Argument *FA = dyn_cast(V)) { return new SlotMachine(FA->getParent()); } else if (const Instruction *I = dyn_cast(V)) { return new SlotMachine(I->getParent()->getParent()); } else if (const BasicBlock *BB = dyn_cast(V)) { return new SlotMachine(BB->getParent()); } else if (const GlobalVariable *GV = dyn_cast(V)){ return new SlotMachine(GV->getParent()); } else if (const Function *Func = dyn_cast(V)) { return new SlotMachine(Func); } return 0; } // getLLVMName - Turn the specified string into an 'LLVM name', which is either // prefixed with % (if the string only contains simple characters) or is // surrounded with ""'s (if it has special chars in it). static std::string getLLVMName(const std::string &Name, bool prefixName = true) { assert(!Name.empty() && "Cannot get empty name!"); // First character cannot start with a number... if (Name[0] >= '0' && Name[0] <= '9') return "\"" + Name + "\""; // Scan to see if we have any characters that are not on the "white list" for (unsigned i = 0, e = Name.size(); i != e; ++i) { char C = Name[i]; assert(C != '"' && "Illegal character in LLVM value name!"); if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') && C != '-' && C != '.' && C != '_') return "\"" + Name + "\""; } // If we get here, then the identifier is legal to use as a "VarID". if (prefixName) return "%"+Name; else return Name; } /// fillTypeNameTable - If the module has a symbol table, take all global types /// and stuff their names into the TypeNames map. /// static void fillTypeNameTable(const Module *M, std::map &TypeNames) { if (!M) return; const SymbolTable &ST = M->getSymbolTable(); SymbolTable::type_const_iterator TI = ST.type_begin(); for (; TI != ST.type_end(); ++TI ) { // As a heuristic, don't insert pointer to primitive types, because // they are used too often to have a single useful name. // const Type *Ty = cast(TI->second); if (!isa(Ty) || !cast(Ty)->getElementType()->isPrimitiveType() || isa(cast(Ty)->getElementType())) TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first))); } } static void calcTypeName(const Type *Ty, std::vector &TypeStack, std::map &TypeNames, std::string & Result){ if (Ty->isPrimitiveType() && !isa(Ty)) { Result += Ty->getDescription(); // Base case return; } // Check to see if the type is named. std::map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) { Result += I->second; return; } if (isa(Ty)) { Result += "opaque"; return; } // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. if (Slot < CurSize) { Result += "\\" + utostr(CurSize-Slot); // Here's the upreference return; } TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. switch (Ty->getTypeID()) { case Type::FunctionTyID: { const FunctionType *FTy = cast(Ty); calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); Result += " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) Result += ", "; calcTypeName(*I, TypeStack, TypeNames, Result); } if (FTy->isVarArg()) { if (FTy->getNumParams()) Result += ", "; Result += "..."; } Result += ")"; break; } case Type::StructTyID: { const StructType *STy = cast(Ty); Result += "{ "; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { if (I != STy->element_begin()) Result += ", "; calcTypeName(*I, TypeStack, TypeNames, Result); } Result += " }"; break; } case Type::PointerTyID: calcTypeName(cast(Ty)->getElementType(), TypeStack, TypeNames, Result); Result += "*"; break; case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); Result += "[" + utostr(ATy->getNumElements()) + " x "; calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); Result += "]"; break; } case Type::PackedTyID: { const PackedType *PTy = cast(Ty); Result += "<" + utostr(PTy->getNumElements()) + " x "; calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); Result += ">"; break; } case Type::OpaqueTyID: Result += "opaque"; break; default: Result += ""; } TypeStack.pop_back(); // Remove self from stack... return; } /// printTypeInt - The internal guts of printing out a type that has a /// potentially named portion. /// static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty, std::map &TypeNames) { // Primitive types always print out their description, regardless of whether // they have been named or not. // if (Ty->isPrimitiveType() && !isa(Ty)) return Out << Ty->getDescription(); // Check to see if the type is named. std::map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return Out << I->second; // Otherwise we have a type that has not been named but is a derived type. // Carefully recurse the type hierarchy to print out any contained symbolic // names. // std::vector TypeStack; std::string TypeName; calcTypeName(Ty, TypeStack, TypeNames, TypeName); TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use return (Out << TypeName); } /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic /// type, iff there is an entry in the modules symbol table for the specified /// type or one of it's component types. This is slower than a simple x << Type /// std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty, const Module *M) { Out << ' '; // If they want us to print out a type, attempt to make it symbolic if there // is a symbol table in the module... if (M) { std::map TypeNames; fillTypeNameTable(M, TypeNames); return printTypeInt(Out, Ty, TypeNames); } else { return Out << Ty->getDescription(); } } /// @brief Internal constant writer. static void WriteConstantInt(std::ostream &Out, const Constant *CV, bool PrintName, std::map &TypeTable, SlotMachine *Machine) { if (const ConstantBool *CB = dyn_cast(CV)) { Out << (CB == ConstantBool::True ? "true" : "false"); } else if (const ConstantSInt *CI = dyn_cast(CV)) { Out << CI->getValue(); } else if (const ConstantUInt *CI = dyn_cast(CV)) { Out << CI->getValue(); } else if (const ConstantFP *CFP = dyn_cast(CV)) { // We would like to output the FP constant value in exponential notation, // but we cannot do this if doing so will lose precision. Check here to // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // std::string StrVal = ftostr(CFP->getValue()); // Check to make sure that the stringized number is not some string like // "Inf" or NaN, that atof will accept, but the lexer will not. Check that // the string matches the "[-+]?[0-9]" regex. // if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) // Reparse stringized version! if (atof(StrVal.c_str()) == CFP->getValue()) { Out << StrVal; return; } // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! // // Behave nicely in the face of C TBAA rules... see: // http://www.nullstone.com/htmls/category/aliastyp.htm // union { double D; uint64_t U; } V; V.D = CFP->getValue(); assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); Out << "0x" << utohexstr(V.U); } else if (isa(CV)) { Out << "zeroinitializer"; } else if (const ConstantArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // const Type *ETy = CA->getType()->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); if (ETy == Type::SByteTy) for (unsigned i = 0; i < CA->getNumOperands(); ++i) if (cast(CA->getOperand(i))->getValue() < 0) { isString = false; break; } if (isString) { Out << "c\""; for (unsigned i = 0; i < CA->getNumOperands(); ++i) { unsigned char C = (unsigned char)cast(CA->getOperand(i))->getRawValue(); if (isprint(C) && C != '"' && C != '\\') { Out << C; } else { Out << '\\' << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); } } Out << "\""; } else { // Cannot output in string format... Out << '['; if (CA->getNumOperands()) { Out << ' '; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CA->getOperand(0), PrintName, TypeTable, Machine); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, TypeTable, Machine); } } Out << " ]"; } } else if (const ConstantStruct *CS = dyn_cast(CV)) { Out << '{'; if (CS->getNumOperands()) { Out << ' '; printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); WriteAsOperandInternal(Out, CS->getOperand(0), PrintName, TypeTable, Machine); for (unsigned i = 1; i < CS->getNumOperands(); i++) { Out << ", "; printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); WriteAsOperandInternal(Out, CS->getOperand(i), PrintName, TypeTable, Machine); } } Out << " }"; } else if (const ConstantPacked *CP = dyn_cast(CV)) { const Type *ETy = CP->getType()->getElementType(); assert(CP->getNumOperands() > 0 && "Number of operands for a PackedConst must be > 0"); Out << '<'; Out << ' '; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CP->getOperand(0), PrintName, TypeTable, Machine); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CP->getOperand(i), PrintName, TypeTable, Machine); } Out << " >"; } else if (isa(CV)) { Out << "null"; } else if (isa(CV)) { Out << "undef"; } else if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName() << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { printTypeInt(Out, (*OI)->getType(), TypeTable); WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); if (OI+1 != CE->op_end()) Out << ", "; } if (CE->getOpcode() == Instruction::Cast) { Out << " to "; printTypeInt(Out, CE->getType(), TypeTable); } Out << ')'; } else { Out << ""; } } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// static void WriteAsOperandInternal(std::ostream &Out, const Value *V, bool PrintName, std::map &TypeTable, SlotMachine *Machine) { Out << ' '; if ((PrintName || isa(V)) && V->hasName()) Out << getLLVMName(V->getName()); else { const Constant *CV = dyn_cast(V); if (CV && !isa(CV)) WriteConstantInt(Out, CV, PrintName, TypeTable, Machine); else { int Slot; if (Machine) { Slot = Machine->getSlot(V); } else { Machine = createSlotMachine(V); if (Machine == 0) Slot = Machine->getSlot(V); else Slot = -1; delete Machine; } if (Slot != -1) Out << '%' << Slot; else Out << ""; } } } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, bool PrintName, const Module *Context) { std::map TypeNames; if (Context == 0) Context = getModuleFromVal(V); if (Context) fillTypeNameTable(Context, TypeNames); if (PrintType) printTypeInt(Out, V->getType(), TypeNames); WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); return Out; } /// WriteAsOperandInternal - Write the name of the specified value out to /// the specified ostream. This can be useful when you just want to print /// int %reg126, not the whole instruction that generated it. /// static void WriteAsOperandInternal(std::ostream &Out, const Type *T, bool PrintName, std::map &TypeTable, SlotMachine *Machine) { Out << ' '; int Slot; if (Machine) { Slot = Machine->getSlot(T); if (Slot != -1) Out << '%' << Slot; else Out << ""; } else { Out << T->getDescription(); } } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty, bool PrintType, bool PrintName, const Module *Context) { std::map TypeNames; assert(Context != 0 && "Can't write types as operand without module context"); fillTypeNameTable(Context, TypeNames); // if (PrintType) // printTypeInt(Out, V->getType(), TypeNames); printTypeInt(Out, Ty, TypeNames); WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0); return Out; } namespace llvm { class AssemblyWriter { std::ostream &Out; SlotMachine &Machine; const Module *TheModule; std::map TypeNames; AssemblyAnnotationWriter *AnnotationWriter; public: inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M, AssemblyAnnotationWriter *AAW) : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { // If the module has a symbol table, take all global types and stuff their // names into the TypeNames map. // fillTypeNameTable(M, TypeNames); } inline void write(const Module *M) { printModule(M); } inline void write(const GlobalVariable *G) { printGlobal(G); } inline void write(const Function *F) { printFunction(F); } inline void write(const BasicBlock *BB) { printBasicBlock(BB); } inline void write(const Instruction *I) { printInstruction(*I); } inline void write(const Constant *CPV) { printConstant(CPV); } inline void write(const Type *Ty) { printType(Ty); } void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); const Module* getModule() { return TheModule; } private: void printModule(const Module *M); void printSymbolTable(const SymbolTable &ST); void printConstant(const Constant *CPV); void printGlobal(const GlobalVariable *GV); void printFunction(const Function *F); void printArgument(const Argument *FA); void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction &I); // printType - Go to extreme measures to attempt to print out a short, // symbolic version of a type name. // std::ostream &printType(const Type *Ty) { return printTypeInt(Out, Ty, TypeNames); } // printTypeAtLeastOneLevel - Print out one level of the possibly complex type // without considering any symbolic types that we may have equal to it. // std::ostream &printTypeAtLeastOneLevel(const Type *Ty); // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); }; } // end of llvm namespace /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type /// without considering any symbolic types that we may have equal to it. /// std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { if (const FunctionType *FTy = dyn_cast(Ty)) { printType(FTy->getReturnType()) << " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) Out << ", "; printType(*I); } if (FTy->isVarArg()) { if (FTy->getNumParams()) Out << ", "; Out << "..."; } Out << ')'; } else if (const StructType *STy = dyn_cast(Ty)) { Out << "{ "; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { if (I != STy->element_begin()) Out << ", "; printType(*I); } Out << " }"; } else if (const PointerType *PTy = dyn_cast(Ty)) { printType(PTy->getElementType()) << '*'; } else if (const ArrayType *ATy = dyn_cast(Ty)) { Out << '[' << ATy->getNumElements() << " x "; printType(ATy->getElementType()) << ']'; } else if (const PackedType *PTy = dyn_cast(Ty)) { Out << '<' << PTy->getNumElements() << " x "; printType(PTy->getElementType()) << '>'; } else if (const OpaqueType *OTy = dyn_cast(Ty)) { Out << "opaque"; } else { if (!Ty->isPrimitiveType()) Out << ""; printType(Ty); } return Out; } void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, bool PrintName) { if (Operand != 0) { if (PrintType) { Out << ' '; printType(Operand->getType()); } WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine); } else { Out << ""; } } void AssemblyWriter::printModule(const Module *M) { if (!M->getModuleIdentifier().empty() && // Don't print the ID if it will start a new line (which would // require a comment char before it). M->getModuleIdentifier().find('\n') == std::string::npos) Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; switch (M->getEndianness()) { case Module::LittleEndian: Out << "target endian = little\n"; break; case Module::BigEndian: Out << "target endian = big\n"; break; case Module::AnyEndianness: break; } switch (M->getPointerSize()) { case Module::Pointer32: Out << "target pointersize = 32\n"; break; case Module::Pointer64: Out << "target pointersize = 64\n"; break; case Module::AnyPointerSize: break; } if (!M->getTargetTriple().empty()) Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; // Loop over the dependent libraries and emit them. Module::lib_iterator LI = M->lib_begin(); Module::lib_iterator LE = M->lib_end(); if (LI != LE) { Out << "deplibs = [ "; while (LI != LE) { Out << '"' << *LI << '"'; ++LI; if (LI != LE) Out << ", "; } Out << " ]\n"; } // Loop over the symbol table, emitting all named constants. printSymbolTable(M->getSymbolTable()); for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I) printGlobal(I); Out << "\nimplementation ; Functions:\n"; // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = "; if (!GV->hasInitializer()) Out << "external "; else switch (GV->getLinkage()) { case GlobalValue::InternalLinkage: Out << "internal "; break; case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; case GlobalValue::WeakLinkage: Out << "weak "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::ExternalLinkage: break; case GlobalValue::GhostLinkage: std::cerr << "GhostLinkage not allowed in AsmWriter!\n"; abort(); } Out << (GV->isConstant() ? "constant " : "global "); printType(GV->getType()->getElementType()); if (GV->hasInitializer()) { Constant* C = cast(GV->getInitializer()); assert(C && "GlobalVar initializer isn't constant?"); writeOperand(GV->getInitializer(), false, isa(C)); } printInfoComment(*GV); Out << "\n"; } // printSymbolTable - Run through symbol table looking for constants // and types. Emit their declarations. void AssemblyWriter::printSymbolTable(const SymbolTable &ST) { // Print the types. for (SymbolTable::type_const_iterator TI = ST.type_begin(); TI != ST.type_end(); ++TI ) { Out << "\t" << getLLVMName(TI->first) << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE // printTypeAtLeastOneLevel(TI->second) << "\n"; } // Print the constants, in type plane order. for (SymbolTable::plane_const_iterator PI = ST.plane_begin(); PI != ST.plane_end(); ++PI ) { SymbolTable::value_const_iterator VI = ST.value_begin(PI->first); SymbolTable::value_const_iterator VE = ST.value_end(PI->first); for (; VI != VE; ++VI) { const Value* V = VI->second; const Constant *CPV = dyn_cast(V) ; if (CPV && !isa(V)) { printConstant(CPV); } } } } /// printConstant - Print out a constant pool entry... /// void AssemblyWriter::printConstant(const Constant *CPV) { // Don't print out unnamed constants, they will be inlined if (!CPV->hasName()) return; // Print out name... Out << "\t" << getLLVMName(CPV->getName()) << " ="; // Write the value out now... writeOperand(CPV, true, false); printInfoComment(*CPV); Out << "\n"; } /// printFunction - Print all aspects of a function. /// void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name... Out << "\n"; // Ensure that no local symbols conflict with global symbols. const_cast(F)->renameLocalSymbols(); if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); if (F->isExternal()) Out << "declare "; else switch (F->getLinkage()) { case GlobalValue::InternalLinkage: Out << "internal "; break; case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; case GlobalValue::WeakLinkage: Out << "weak "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::ExternalLinkage: break; case GlobalValue::GhostLinkage: std::cerr << "GhostLinkage not allowed in AsmWriter!\n"; abort(); } printType(F->getReturnType()) << ' '; if (!F->getName().empty()) Out << getLLVMName(F->getName()); else Out << "\"\""; Out << '('; Machine.incorporateFunction(F); // Loop over the arguments, printing them... const FunctionType *FT = F->getFunctionType(); for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) printArgument(I); // Finish printing arguments... if (FT->isVarArg()) { if (FT->getNumParams()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ')'; if (F->isExternal()) { Out << "\n"; } else { Out << " {"; // Output all of its basic blocks... for the function for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) printBasicBlock(I); Out << "}\n"; } Machine.purgeFunction(); } /// printArgument - This member is called for every argument that is passed into /// the function. Simply print it out /// void AssemblyWriter::printArgument(const Argument *Arg) { // Insert commas as we go... the first arg doesn't get a comma if (Arg != &Arg->getParent()->afront()) Out << ", "; // Output type... printType(Arg->getType()); // Output name, if available... if (Arg->hasName()) Out << ' ' << getLLVMName(Arg->getName()); } /// printBasicBlock - This member is called for each basic block in a method. /// void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n" << getLLVMName(BB->getName(), false) << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n;