//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the AArch64-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // AArch64GenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64Subtarget.h" #include "AArch64TargetMachine.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CommandLine.h" using namespace llvm; namespace { class AArch64FastISel : public FastISel { class Address { public: typedef enum { RegBase, FrameIndexBase } BaseKind; private: BaseKind Kind; union { unsigned Reg; int FI; } Base; int64_t Offset; const GlobalValue *GV; public: Address() : Kind(RegBase), Offset(0), GV(nullptr) { Base.Reg = 0; } void setKind(BaseKind K) { Kind = K; } BaseKind getKind() const { return Kind; } bool isRegBase() const { return Kind == RegBase; } bool isFIBase() const { return Kind == FrameIndexBase; } void setReg(unsigned Reg) { assert(isRegBase() && "Invalid base register access!"); Base.Reg = Reg; } unsigned getReg() const { assert(isRegBase() && "Invalid base register access!"); return Base.Reg; } void setFI(unsigned FI) { assert(isFIBase() && "Invalid base frame index access!"); Base.FI = FI; } unsigned getFI() const { assert(isFIBase() && "Invalid base frame index access!"); return Base.FI; } void setOffset(int64_t O) { Offset = O; } int64_t getOffset() { return Offset; } void setGlobalValue(const GlobalValue *G) { GV = G; } const GlobalValue *getGlobalValue() { return GV; } bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); } }; /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can /// make the right decision when generating code for different targets. const AArch64Subtarget *Subtarget; LLVMContext *Context; bool FastLowerArguments() override; bool FastLowerCall(CallLoweringInfo &CLI) override; bool FastLowerIntrinsicCall(const IntrinsicInst *II) override; private: // Selection routines. bool SelectLoad(const Instruction *I); bool SelectStore(const Instruction *I); bool SelectBranch(const Instruction *I); bool SelectIndirectBr(const Instruction *I); bool SelectCmp(const Instruction *I); bool SelectSelect(const Instruction *I); bool SelectFPExt(const Instruction *I); bool SelectFPTrunc(const Instruction *I); bool SelectFPToInt(const Instruction *I, bool Signed); bool SelectIntToFP(const Instruction *I, bool Signed); bool SelectRem(const Instruction *I, unsigned ISDOpcode); bool SelectRet(const Instruction *I); bool SelectTrunc(const Instruction *I); bool SelectIntExt(const Instruction *I); bool SelectMul(const Instruction *I); bool SelectShift(const Instruction *I, bool IsLeftShift, bool IsArithmetic); bool SelectBitCast(const Instruction *I); // Utility helper routines. bool isTypeLegal(Type *Ty, MVT &VT); bool isLoadStoreTypeLegal(Type *Ty, MVT &VT); bool ComputeAddress(const Value *Obj, Address &Addr); bool ComputeCallAddress(const Value *V, Address &Addr); bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor, bool UseUnscaled); void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, unsigned Flags, bool UseUnscaled); bool IsMemCpySmall(uint64_t Len, unsigned Alignment); bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, unsigned Alignment); bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I, const Value *Cond); // Emit functions. bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt); bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, bool UseUnscaled = false); bool EmitStore(MVT VT, unsigned SrcReg, Address Addr, bool UseUnscaled = false); unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt); unsigned Emit_MUL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); unsigned Emit_SMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); unsigned Emit_UMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); unsigned Emit_LSL_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm); unsigned Emit_LSR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm); unsigned Emit_ASR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Imm); unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT); unsigned AArch64MaterializeGV(const GlobalValue *GV); // Call handling routines. private: CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; bool ProcessCallArgs(CallLoweringInfo &CLI, SmallVectorImpl &ArgVTs, unsigned &NumBytes); bool FinishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); public: // Backend specific FastISel code. unsigned TargetMaterializeAlloca(const AllocaInst *AI) override; unsigned TargetMaterializeConstant(const Constant *C) override; explicit AArch64FastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) : FastISel(funcInfo, libInfo) { Subtarget = &TM.getSubtarget(); Context = &funcInfo.Fn->getContext(); } bool TargetSelectInstruction(const Instruction *I) override; #include "AArch64GenFastISel.inc" }; } // end anonymous namespace #include "AArch64GenCallingConv.inc" CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const { if (CC == CallingConv::WebKit_JS) return CC_AArch64_WebKit_JS; return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS; } unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) { assert(TLI.getValueType(AI->getType(), true) == MVT::i64 && "Alloca should always return a pointer."); // Don't handle dynamic allocas. if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), ResultReg) .addFrameIndex(SI->second) .addImm(0) .addImm(0); return ResultReg; } return 0; } unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) { if (VT != MVT::f32 && VT != MVT::f64) return 0; const APFloat Val = CFP->getValueAPF(); bool is64bit = (VT == MVT::f64); // This checks to see if we can use FMOV instructions to materialize // a constant, otherwise we have to materialize via the constant pool. if (TLI.isFPImmLegal(Val, VT)) { int Imm; unsigned Opc; if (is64bit) { Imm = AArch64_AM::getFP64Imm(Val); Opc = AArch64::FMOVDi; } else { Imm = AArch64_AM::getFP32Imm(Val); Opc = AArch64::FMOVSi; } unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addImm(Imm); return ResultReg; } // Materialize via constant pool. MachineConstantPool wants an explicit // alignment. unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); if (Align == 0) Align = DL.getTypeAllocSize(CFP->getType()); unsigned Idx = MCP.getConstantPoolIndex(cast(CFP), Align); unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE); unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui; unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(ADRPReg) .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); return ResultReg; } unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) { // We can't handle thread-local variables quickly yet. if (GV->isThreadLocal()) return 0; // MachO still uses GOT for large code-model accesses, but ELF requires // movz/movk sequences, which FastISel doesn't handle yet. if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO()) return 0; unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM); EVT DestEVT = TLI.getValueType(GV->getType(), true); if (!DestEVT.isSimple()) return 0; unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); unsigned ResultReg; if (OpFlags & AArch64II::MO_GOT) { // ADRP + LDRX BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE); ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui), ResultReg) .addReg(ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } else { // ADRP + ADDX BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE); ResultReg = createResultReg(&AArch64::GPR64spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), ResultReg) .addReg(ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC) .addImm(0); } return ResultReg; } unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); // FIXME: Handle ConstantInt. if (const ConstantFP *CFP = dyn_cast(C)) return AArch64MaterializeFP(CFP, VT); else if (const GlobalValue *GV = dyn_cast(C)) return AArch64MaterializeGV(GV); return 0; } // Computes the address to get to an object. bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) { const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(Obj)) { // Don't walk into other basic blocks unless the object is an alloca from // another block, otherwise it may not have a virtual register assigned. if (FuncInfo.StaticAllocaMap.count(static_cast(Obj)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast(Obj)) { Opcode = C->getOpcode(); U = C; } if (const PointerType *Ty = dyn_cast(Obj->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: break; case Instruction::BitCast: { // Look through bitcasts. return ComputeAddress(U->getOperand(0), Addr); } case Instruction::IntToPtr: { // Look past no-op inttoptrs. if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return ComputeAddress(U->getOperand(0), Addr); break; } case Instruction::PtrToInt: { // Look past no-op ptrtoints. if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) return ComputeAddress(U->getOperand(0), Addr); break; } case Instruction::GetElementPtr: { Address SavedAddr = Addr; uint64_t TmpOffset = Addr.getOffset(); // Iterate through the GEP folding the constants into offsets where // we can. gep_type_iterator GTI = gep_type_begin(U); for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i, ++GTI) { const Value *Op = *i; if (StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Idx = cast(Op)->getZExtValue(); TmpOffset += SL->getElementOffset(Idx); } else { uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast(Op)) { // Constant-offset addressing. TmpOffset += CI->getSExtValue() * S; break; } if (canFoldAddIntoGEP(U, Op)) { // A compatible add with a constant operand. Fold the constant. ConstantInt *CI = cast(cast(Op)->getOperand(1)); TmpOffset += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast(Op)->getOperand(0); continue; } // Unsupported goto unsupported_gep; } } } // Try to grab the base operand now. Addr.setOffset(TmpOffset); if (ComputeAddress(U->getOperand(0), Addr)) return true; // We failed, restore everything and try the other options. Addr = SavedAddr; unsupported_gep: break; } case Instruction::Alloca: { const AllocaInst *AI = cast(Obj); DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { Addr.setKind(Address::FrameIndexBase); Addr.setFI(SI->second); return true; } break; } case Instruction::Add: // Adds of constants are common and easy enough. if (const ConstantInt *CI = dyn_cast(U->getOperand(1))) { Addr.setOffset(Addr.getOffset() + (uint64_t)CI->getSExtValue()); return ComputeAddress(U->getOperand(0), Addr); } break; } // Try to get this in a register if nothing else has worked. if (!Addr.isValid()) Addr.setReg(getRegForValue(Obj)); return Addr.isValid(); } bool AArch64FastISel::ComputeCallAddress(const Value *V, Address &Addr) { const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; bool InMBB = true; if (const auto *I = dyn_cast(V)) { Opcode = I->getOpcode(); U = I; InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); } else if (const auto *C = dyn_cast(V)) { Opcode = C->getOpcode(); U = C; } switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts if its operand is in the same BB. if (InMBB) return ComputeCallAddress(U->getOperand(0), Addr); break; case Instruction::IntToPtr: // Look past no-op inttoptrs if its operand is in the same BB. if (InMBB && TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return ComputeCallAddress(U->getOperand(0), Addr); break; case Instruction::PtrToInt: // Look past no-op ptrtoints if its operand is in the same BB. if (InMBB && TLI.getValueType(U->getType()) == TLI.getPointerTy()) return ComputeCallAddress(U->getOperand(0), Addr); break; } if (const GlobalValue *GV = dyn_cast(V)) { Addr.setGlobalValue(GV); return true; } // If all else fails, try to materialize the value in a register. if (!Addr.getGlobalValue()) { Addr.setReg(getRegForValue(V)); return Addr.getReg() != 0; } return false; } bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) { EVT evt = TLI.getValueType(Ty, true); // Only handle simple types. if (evt == MVT::Other || !evt.isSimple()) return false; VT = evt.getSimpleVT(); // This is a legal type, but it's not something we handle in fast-isel. if (VT == MVT::f128) return false; // Handle all other legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) { if (isTypeLegal(Ty, VT)) return true; // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. For stores, this reflects truncation. if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) return true; return false; } bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor, bool UseUnscaled) { bool needsLowering = false; int64_t Offset = Addr.getOffset(); switch (VT.SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (!UseUnscaled) // Using scaled, 12-bit, unsigned immediate offsets. needsLowering = ((Offset & 0xfff) != Offset); else // Using unscaled, 9-bit, signed immediate offsets. needsLowering = (Offset > 256 || Offset < -256); break; } //If this is a stack pointer and the offset needs to be simplified then put // the alloca address into a register, set the base type back to register and // continue. This should almost never happen. if (needsLowering && Addr.getKind() == Address::FrameIndexBase) { unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), ResultReg) .addFrameIndex(Addr.getFI()) .addImm(0) .addImm(0); Addr.setKind(Address::RegBase); Addr.setReg(ResultReg); } // Since the offset is too large for the load/store instruction get the // reg+offset into a register. if (needsLowering) { uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor; unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false, UnscaledOffset, MVT::i64); if (ResultReg == 0) return false; Addr.setReg(ResultReg); Addr.setOffset(0); } return true; } void AArch64FastISel::AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, unsigned Flags, bool UseUnscaled) { int64_t Offset = Addr.getOffset(); // Frame base works a bit differently. Handle it separately. if (Addr.getKind() == Address::FrameIndexBase) { int FI = Addr.getFI(); // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size // and alignment should be based on the VT. MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(FI, Offset), Flags, MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); // Now add the rest of the operands. MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO); } else { // Now add the rest of the operands. MIB.addReg(Addr.getReg()); MIB.addImm(Offset); } } bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, bool UseUnscaled) { // Negative offsets require unscaled, 9-bit, signed immediate offsets. // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. if (!UseUnscaled && Addr.getOffset() < 0) UseUnscaled = true; unsigned Opc; const TargetRegisterClass *RC; bool VTIsi1 = false; int64_t ScaleFactor = 0; switch (VT.SimpleTy) { default: return false; case MVT::i1: VTIsi1 = true; // Intentional fall-through. case MVT::i8: Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui; RC = &AArch64::GPR32RegClass; ScaleFactor = 1; break; case MVT::i16: Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui; RC = &AArch64::GPR32RegClass; ScaleFactor = 2; break; case MVT::i32: Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui; RC = &AArch64::GPR32RegClass; ScaleFactor = 4; break; case MVT::i64: Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui; RC = &AArch64::GPR64RegClass; ScaleFactor = 8; break; case MVT::f32: Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui; RC = TLI.getRegClassFor(VT); ScaleFactor = 4; break; case MVT::f64: Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui; RC = TLI.getRegClassFor(VT); ScaleFactor = 8; break; } // Scale the offset. if (!UseUnscaled) { int64_t Offset = Addr.getOffset(); if (Offset & (ScaleFactor - 1)) // Retry using an unscaled, 9-bit, signed immediate offset. return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true); Addr.setOffset(Offset / ScaleFactor); } // Simplify this down to something we can handle. if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) return false; // Create the base instruction, then add the operands. ResultReg = createResultReg(RC); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled); // Loading an i1 requires special handling. if (VTIsi1) { MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass); unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ANDReg) .addReg(ResultReg) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); ResultReg = ANDReg; } return true; } bool AArch64FastISel::SelectLoad(const Instruction *I) { MVT VT; // Verify we have a legal type before going any further. Currently, we handle // simple types that will directly fit in a register (i32/f32/i64/f64) or // those that can be sign or zero-extended to a basic operation (i1/i8/i16). if (!isLoadStoreTypeLegal(I->getType(), VT) || cast(I)->isAtomic()) return false; // See if we can handle this address. Address Addr; if (!ComputeAddress(I->getOperand(0), Addr)) return false; unsigned ResultReg; if (!EmitLoad(VT, ResultReg, Addr)) return false; UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr, bool UseUnscaled) { // Negative offsets require unscaled, 9-bit, signed immediate offsets. // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. if (!UseUnscaled && Addr.getOffset() < 0) UseUnscaled = true; unsigned StrOpc; bool VTIsi1 = false; int64_t ScaleFactor = 0; // Using scaled, 12-bit, unsigned immediate offsets. switch (VT.SimpleTy) { default: return false; case MVT::i1: VTIsi1 = true; case MVT::i8: StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui; ScaleFactor = 1; break; case MVT::i16: StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui; ScaleFactor = 2; break; case MVT::i32: StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui; ScaleFactor = 4; break; case MVT::i64: StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui; ScaleFactor = 8; break; case MVT::f32: StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui; ScaleFactor = 4; break; case MVT::f64: StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui; ScaleFactor = 8; break; } // Scale the offset. if (!UseUnscaled) { int64_t Offset = Addr.getOffset(); if (Offset & (ScaleFactor - 1)) // Retry using an unscaled, 9-bit, signed immediate offset. return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true); Addr.setOffset(Offset / ScaleFactor); } // Simplify this down to something we can handle. if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) return false; // Storing an i1 requires special handling. if (VTIsi1) { MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass); unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ANDReg) .addReg(SrcReg) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); SrcReg = ANDReg; } // Create the base instruction, then add the operands. MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(StrOpc)).addReg(SrcReg); AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled); return true; } bool AArch64FastISel::SelectStore(const Instruction *I) { MVT VT; Value *Op0 = I->getOperand(0); // Verify we have a legal type before going any further. Currently, we handle // simple types that will directly fit in a register (i32/f32/i64/f64) or // those that can be sign or zero-extended to a basic operation (i1/i8/i16). if (!isLoadStoreTypeLegal(Op0->getType(), VT) || cast(I)->isAtomic()) return false; // Get the value to be stored into a register. unsigned SrcReg = getRegForValue(Op0); if (SrcReg == 0) return false; // See if we can handle this address. Address Addr; if (!ComputeAddress(I->getOperand(1), Addr)) return false; if (!EmitStore(VT, SrcReg, Addr)) return false; return true; } static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) { switch (Pred) { case CmpInst::FCMP_ONE: case CmpInst::FCMP_UEQ: default: // AL is our "false" for now. The other two need more compares. return AArch64CC::AL; case CmpInst::ICMP_EQ: case CmpInst::FCMP_OEQ: return AArch64CC::EQ; case CmpInst::ICMP_SGT: case CmpInst::FCMP_OGT: return AArch64CC::GT; case CmpInst::ICMP_SGE: case CmpInst::FCMP_OGE: return AArch64CC::GE; case CmpInst::ICMP_UGT: case CmpInst::FCMP_UGT: return AArch64CC::HI; case CmpInst::FCMP_OLT: return AArch64CC::MI; case CmpInst::ICMP_ULE: case CmpInst::FCMP_OLE: return AArch64CC::LS; case CmpInst::FCMP_ORD: return AArch64CC::VC; case CmpInst::FCMP_UNO: return AArch64CC::VS; case CmpInst::FCMP_UGE: return AArch64CC::PL; case CmpInst::ICMP_SLT: case CmpInst::FCMP_ULT: return AArch64CC::LT; case CmpInst::ICMP_SLE: case CmpInst::FCMP_ULE: return AArch64CC::LE; case CmpInst::FCMP_UNE: case CmpInst::ICMP_NE: return AArch64CC::NE; case CmpInst::ICMP_UGE: return AArch64CC::HS; case CmpInst::ICMP_ULT: return AArch64CC::LO; } } bool AArch64FastISel::SelectBranch(const Instruction *I) { const BranchInst *BI = cast(I); MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; AArch64CC::CondCode CC = AArch64CC::NE; if (const CmpInst *CI = dyn_cast(BI->getCondition())) { if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { // We may not handle every CC for now. CC = getCompareCC(CI->getPredicate()); if (CC == AArch64CC::AL) return false; // Emit the cmp. if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) return false; // Emit the branch. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); // Obtain the branch weight and add the TrueBB to the successor list. uint32_t BranchWeight = 0; if (FuncInfo.BPI) BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), TBB->getBasicBlock()); FuncInfo.MBB->addSuccessor(TBB, BranchWeight); FastEmitBranch(FBB, DbgLoc); return true; } } else if (TruncInst *TI = dyn_cast(BI->getCondition())) { MVT SrcVT; if (TI->hasOneUse() && TI->getParent() == I->getParent() && (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) { unsigned CondReg = getRegForValue(TI->getOperand(0)); if (CondReg == 0) return false; // Issue an extract_subreg to get the lower 32-bits. if (SrcVT == MVT::i64) CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true, AArch64::sub_32); MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass); unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ANDReg) .addReg(CondReg) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri)) .addReg(ANDReg) .addReg(ANDReg) .addImm(0) .addImm(0); if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); CC = AArch64CC::EQ; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); // Obtain the branch weight and add the TrueBB to the successor list. uint32_t BranchWeight = 0; if (FuncInfo.BPI) BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), TBB->getBasicBlock()); FuncInfo.MBB->addSuccessor(TBB, BranchWeight); FastEmitBranch(FBB, DbgLoc); return true; } } else if (const ConstantInt *CI = dyn_cast(BI->getCondition())) { uint64_t Imm = CI->getZExtValue(); MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B)) .addMBB(Target); // Obtain the branch weight and add the target to the successor list. uint32_t BranchWeight = 0; if (FuncInfo.BPI) BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), Target->getBasicBlock()); FuncInfo.MBB->addSuccessor(Target, BranchWeight); return true; } else if (foldXALUIntrinsic(CC, I, BI->getCondition())) { // Fake request the condition, otherwise the intrinsic might be completely // optimized away. unsigned CondReg = getRegForValue(BI->getCondition()); if (!CondReg) return false; // Emit the branch. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); // Obtain the branch weight and add the TrueBB to the successor list. uint32_t BranchWeight = 0; if (FuncInfo.BPI) BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), TBB->getBasicBlock()); FuncInfo.MBB->addSuccessor(TBB, BranchWeight); FastEmitBranch(FBB, DbgLoc); return true; } unsigned CondReg = getRegForValue(BI->getCondition()); if (CondReg == 0) return false; // We've been divorced from our compare! Our block was split, and // now our compare lives in a predecessor block. We musn't // re-compare here, as the children of the compare aren't guaranteed // live across the block boundary (we *could* check for this). // Regardless, the compare has been done in the predecessor block, // and it left a value for us in a virtual register. Ergo, we test // the one-bit value left in the virtual register. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri), AArch64::WZR) .addReg(CondReg) .addImm(0) .addImm(0); if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); CC = AArch64CC::EQ; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); // Obtain the branch weight and add the TrueBB to the successor list. uint32_t BranchWeight = 0; if (FuncInfo.BPI) BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), TBB->getBasicBlock()); FuncInfo.MBB->addSuccessor(TBB, BranchWeight); FastEmitBranch(FBB, DbgLoc); return true; } bool AArch64FastISel::SelectIndirectBr(const Instruction *I) { const IndirectBrInst *BI = cast(I); unsigned AddrReg = getRegForValue(BI->getOperand(0)); if (AddrReg == 0) return false; // Emit the indirect branch. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR)) .addReg(AddrReg); // Make sure the CFG is up-to-date. for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i) FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]); return true; } bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) { Type *Ty = Src1Value->getType(); EVT SrcEVT = TLI.getValueType(Ty, true); if (!SrcEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); // Check to see if the 2nd operand is a constant that we can encode directly // in the compare. uint64_t Imm; bool UseImm = false; bool isNegativeImm = false; if (const ConstantInt *ConstInt = dyn_cast(Src2Value)) { if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { const APInt &CIVal = ConstInt->getValue(); Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue(); if (CIVal.isNegative()) { isNegativeImm = true; Imm = -Imm; } // FIXME: We can handle more immediates using shifts. UseImm = ((Imm & 0xfff) == Imm); } } else if (const ConstantFP *ConstFP = dyn_cast(Src2Value)) { if (SrcVT == MVT::f32 || SrcVT == MVT::f64) if (ConstFP->isZero() && !ConstFP->isNegative()) UseImm = true; } unsigned ZReg; unsigned CmpOpc; bool isICmp = true; bool needsExt = false; switch (SrcVT.SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: needsExt = true; // Intentional fall-through. case MVT::i32: ZReg = AArch64::WZR; if (UseImm) CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri; else CmpOpc = AArch64::SUBSWrr; break; case MVT::i64: ZReg = AArch64::XZR; if (UseImm) CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri; else CmpOpc = AArch64::SUBSXrr; break; case MVT::f32: isICmp = false; CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr; break; case MVT::f64: isICmp = false; CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr; break; } unsigned SrcReg1 = getRegForValue(Src1Value); if (SrcReg1 == 0) return false; unsigned SrcReg2; if (!UseImm) { SrcReg2 = getRegForValue(Src2Value); if (SrcReg2 == 0) return false; } // We have i1, i8, or i16, we need to either zero extend or sign extend. if (needsExt) { SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); if (SrcReg1 == 0) return false; if (!UseImm) { SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); if (SrcReg2 == 0) return false; } } if (isICmp) { if (UseImm) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) .addReg(ZReg) .addReg(SrcReg1) .addImm(Imm) .addImm(0); else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) .addReg(ZReg) .addReg(SrcReg1) .addReg(SrcReg2); } else { if (UseImm) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) .addReg(SrcReg1); else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) .addReg(SrcReg1) .addReg(SrcReg2); } return true; } bool AArch64FastISel::SelectCmp(const Instruction *I) { const CmpInst *CI = cast(I); // We may not handle every CC for now. AArch64CC::CondCode CC = getCompareCC(CI->getPredicate()); if (CC == AArch64CC::AL) return false; // Emit the cmp. if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) return false; // Now set a register based on the comparison. AArch64CC::CondCode invertedCC = getInvertedCondCode(CC); unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr), ResultReg) .addReg(AArch64::WZR) .addReg(AArch64::WZR) .addImm(invertedCC); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectSelect(const Instruction *I) { const SelectInst *SI = cast(I); EVT DestEVT = TLI.getValueType(SI->getType(), true); if (!DestEVT.isSimple()) return false; MVT DestVT = DestEVT.getSimpleVT(); if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 && DestVT != MVT::f64) return false; unsigned SelectOpc; switch (DestVT.SimpleTy) { default: return false; case MVT::i32: SelectOpc = AArch64::CSELWr; break; case MVT::i64: SelectOpc = AArch64::CSELXr; break; case MVT::f32: SelectOpc = AArch64::FCSELSrrr; break; case MVT::f64: SelectOpc = AArch64::FCSELDrrr; break; } const Value *Cond = SI->getCondition(); bool NeedTest = true; AArch64CC::CondCode CC = AArch64CC::NE; if (foldXALUIntrinsic(CC, I, Cond)) NeedTest = false; unsigned CondReg = getRegForValue(Cond); if (!CondReg) return false; bool CondIsKill = hasTrivialKill(Cond); if (NeedTest) { MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass); unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ANDReg) .addReg(CondReg, getKillRegState(CondIsKill)) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri)) .addReg(ANDReg) .addReg(ANDReg) .addImm(0) .addImm(0); } unsigned TrueReg = getRegForValue(SI->getTrueValue()); bool TrueIsKill = hasTrivialKill(SI->getTrueValue()); unsigned FalseReg = getRegForValue(SI->getFalseValue()); bool FalseIsKill = hasTrivialKill(SI->getFalseValue()); if (!TrueReg || !FalseReg) return false; unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc), ResultReg) .addReg(TrueReg, getKillRegState(TrueIsKill)) .addReg(FalseReg, getKillRegState(FalseIsKill)) .addImm(CC); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectFPExt(const Instruction *I) { Value *V = I->getOperand(0); if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) return false; unsigned Op = getRegForValue(V); if (Op == 0) return false; unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr), ResultReg).addReg(Op); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectFPTrunc(const Instruction *I) { Value *V = I->getOperand(0); if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy()) return false; unsigned Op = getRegForValue(V); if (Op == 0) return false; unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr), ResultReg).addReg(Op); UpdateValueMap(I, ResultReg); return true; } // FPToUI and FPToSI bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) { MVT DestVT; if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) return false; unsigned SrcReg = getRegForValue(I->getOperand(0)); if (SrcReg == 0) return false; EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); if (SrcVT == MVT::f128) return false; unsigned Opc; if (SrcVT == MVT::f64) { if (Signed) Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr; else Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr; } else { if (Signed) Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr; else Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr; } unsigned ResultReg = createResultReg( DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(SrcReg); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) { MVT DestVT; if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) return false; assert ((DestVT == MVT::f32 || DestVT == MVT::f64) && "Unexpected value type."); unsigned SrcReg = getRegForValue(I->getOperand(0)); if (SrcReg == 0) return false; EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); // Handle sign-extension. if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { SrcReg = EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed); if (SrcReg == 0) return false; } MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass); unsigned Opc; if (SrcVT == MVT::i64) { if (Signed) Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri; else Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri; } else { if (Signed) Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri; else Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri; } unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(SrcReg); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::FastLowerArguments() { if (!FuncInfo.CanLowerReturn) return false; const Function *F = FuncInfo.Fn; if (F->isVarArg()) return false; CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::C) return false; // Only handle simple cases like i1/i8/i16/i32/i64/f32/f64 of up to 8 GPR and // FPR each. unsigned GPRCnt = 0; unsigned FPRCnt = 0; unsigned Idx = 0; for (auto const &Arg : F->args()) { // The first argument is at index 1. ++Idx; if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || F->getAttributes().hasAttribute(Idx, Attribute::InReg) || F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || F->getAttributes().hasAttribute(Idx, Attribute::Nest)) return false; Type *ArgTy = Arg.getType(); if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) return false; EVT ArgVT = TLI.getValueType(ArgTy); if (!ArgVT.isSimple()) return false; switch (ArgVT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: ++GPRCnt; break; case MVT::f16: case MVT::f32: case MVT::f64: ++FPRCnt; break; } if (GPRCnt > 8 || FPRCnt > 8) return false; } static const MCPhysReg Registers[5][8] = { { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4, AArch64::W5, AArch64::W6, AArch64::W7 }, { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 }, { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4, AArch64::H5, AArch64::H6, AArch64::H7 }, { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4, AArch64::S5, AArch64::S6, AArch64::S7 }, { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4, AArch64::D5, AArch64::D6, AArch64::D7 } }; unsigned GPRIdx = 0; unsigned FPRIdx = 0; for (auto const &Arg : F->args()) { MVT VT = TLI.getSimpleValueType(Arg.getType()); unsigned SrcReg; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type."); case MVT::i1: case MVT::i8: case MVT::i16: VT = MVT::i32; // fall-through case MVT::i32: SrcReg = Registers[0][GPRIdx++]; break; case MVT::i64: SrcReg = Registers[1][GPRIdx++]; break; case MVT::f16: SrcReg = Registers[2][FPRIdx++]; break; case MVT::f32: SrcReg = Registers[3][FPRIdx++]; break; case MVT::f64: SrcReg = Registers[4][FPRIdx++]; break; } // Skip unused arguments. if (Arg.use_empty()) { UpdateValueMap(&Arg, 0); continue; } const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. // Without this, EmitLiveInCopies may eliminate the livein if its only // use is a bitcast (which isn't turned into an instruction). unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) .addReg(DstReg, getKillRegState(true)); UpdateValueMap(&Arg, ResultReg); } return true; } bool AArch64FastISel::ProcessCallArgs(CallLoweringInfo &CLI, SmallVectorImpl &OutVTs, unsigned &NumBytes) { CallingConv::ID CC = CLI.CallConv; SmallVector ArgLocs; CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); // Get a count of how many bytes are to be pushed on the stack. NumBytes = CCInfo.getNextStackOffset(); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) .addImm(NumBytes); // Process the args. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; const Value *ArgVal = CLI.OutVals[VA.getValNo()]; MVT ArgVT = OutVTs[VA.getValNo()]; unsigned ArgReg = getRegForValue(ArgVal); if (!ArgReg) return false; // Handle arg promotion: SExt, ZExt, AExt. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: { MVT DestVT = VA.getLocVT(); MVT SrcVT = ArgVT; ArgReg = EmitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); if (!ArgReg) return false; break; } case CCValAssign::AExt: // Intentional fall-through. case CCValAssign::ZExt: { MVT DestVT = VA.getLocVT(); MVT SrcVT = ArgVT; ArgReg = EmitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); if (!ArgReg) return false; break; } default: llvm_unreachable("Unknown arg promotion!"); } // Now copy/store arg to correct locations. if (VA.isRegLoc() && !VA.needsCustom()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); CLI.OutRegs.push_back(VA.getLocReg()); } else if (VA.needsCustom()) { // FIXME: Handle custom args. return false; } else { assert(VA.isMemLoc() && "Assuming store on stack."); // Don't emit stores for undef values. if (isa(ArgVal)) continue; // Need to store on the stack. unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8; unsigned BEAlign = 0; if (ArgSize < 8 && !Subtarget->isLittleEndian()) BEAlign = 8 - ArgSize; Address Addr; Addr.setKind(Address::RegBase); Addr.setReg(AArch64::SP); Addr.setOffset(VA.getLocMemOffset() + BEAlign); if (!EmitStore(ArgVT, ArgReg, Addr)) return false; } } return true; } bool AArch64FastISel::FinishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes) { CallingConv::ID CC = CLI.CallConv; // Issue CALLSEQ_END unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) .addImm(NumBytes).addImm(0); // Now the return value. if (RetVT != MVT::isVoid) { SmallVector RVLocs; CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC)); // Only handle a single return value. if (RVLocs.size() != 1) return false; // Copy all of the result registers out of their specified physreg. MVT CopyVT = RVLocs[0].getValVT(); unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) .addReg(RVLocs[0].getLocReg()); CLI.InRegs.push_back(RVLocs[0].getLocReg()); CLI.ResultReg = ResultReg; CLI.NumResultRegs = 1; } return true; } bool AArch64FastISel::FastLowerCall(CallLoweringInfo &CLI) { CallingConv::ID CC = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; const Value *Callee = CLI.Callee; const char *SymName = CLI.SymName; CodeModel::Model CM = TM.getCodeModel(); // Only support the small and large code model. if (CM != CodeModel::Small && CM != CodeModel::Large) return false; // FIXME: Add large code model support for ELF. if (CM == CodeModel::Large && !Subtarget->isTargetMachO()) return false; // Let SDISel handle vararg functions. if (IsVarArg) return false; // FIXME: Only handle *simple* calls for now. MVT RetVT; if (CLI.RetTy->isVoidTy()) RetVT = MVT::isVoid; else if (!isTypeLegal(CLI.RetTy, RetVT)) return false; for (auto Flag : CLI.OutFlags) if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) return false; // Set up the argument vectors. SmallVector OutVTs; OutVTs.reserve(CLI.OutVals.size()); for (auto *Val : CLI.OutVals) { MVT VT; if (!isTypeLegal(Val->getType(), VT) && !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) return false; // We don't handle vector parameters yet. if (VT.isVector() || VT.getSizeInBits() > 64) return false; OutVTs.push_back(VT); } Address Addr; if (!ComputeCallAddress(Callee, Addr)) return false; // Handle the arguments now that we've gotten them. unsigned NumBytes; if (!ProcessCallArgs(CLI, OutVTs, NumBytes)) return false; // Issue the call. MachineInstrBuilder MIB; if (CM == CodeModel::Small) { unsigned CallOpc = Addr.getReg() ? AArch64::BLR : AArch64::BL; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); if (SymName) MIB.addExternalSymbol(SymName, 0); else if (Addr.getGlobalValue()) MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0); else if (Addr.getReg()) MIB.addReg(Addr.getReg()); else return false; } else { unsigned CallReg = 0; if (SymName) { unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), ADRPReg) .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE); CallReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui), CallReg) .addReg(ADRPReg) .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } else if (Addr.getGlobalValue()) { CallReg = AArch64MaterializeGV(Addr.getGlobalValue()); } else if (Addr.getReg()) CallReg = Addr.getReg(); if (!CallReg) return false; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BLR)).addReg(CallReg); } // Add implicit physical register uses to the call. for (auto Reg : CLI.OutRegs) MIB.addReg(Reg, RegState::Implicit); // Add a register mask with the call-preserved registers. // Proper defs for return values will be added by setPhysRegsDeadExcept(). MIB.addRegMask(TRI.getCallPreservedMask(CC)); CLI.Call = MIB; // Finish off the call including any return values. return FinishCall(CLI, RetVT, NumBytes); } bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) { if (Alignment) return Len / Alignment <= 4; else return Len < 32; } bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, unsigned Alignment) { // Make sure we don't bloat code by inlining very large memcpy's. if (!IsMemCpySmall(Len, Alignment)) return false; int64_t UnscaledOffset = 0; Address OrigDest = Dest; Address OrigSrc = Src; while (Len) { MVT VT; if (!Alignment || Alignment >= 8) { if (Len >= 8) VT = MVT::i64; else if (Len >= 4) VT = MVT::i32; else if (Len >= 2) VT = MVT::i16; else { VT = MVT::i8; } } else { // Bound based on alignment. if (Len >= 4 && Alignment == 4) VT = MVT::i32; else if (Len >= 2 && Alignment == 2) VT = MVT::i16; else { VT = MVT::i8; } } bool RV; unsigned ResultReg; RV = EmitLoad(VT, ResultReg, Src); if (!RV) return false; RV = EmitStore(VT, ResultReg, Dest); if (!RV) return false; int64_t Size = VT.getSizeInBits() / 8; Len -= Size; UnscaledOffset += Size; // We need to recompute the unscaled offset for each iteration. Dest.setOffset(OrigDest.getOffset() + UnscaledOffset); Src.setOffset(OrigSrc.getOffset() + UnscaledOffset); } return true; } /// \brief Check if it is possible to fold the condition from the XALU intrinsic /// into the user. The condition code will only be updated on success. bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I, const Value *Cond) { if (!isa(Cond)) return false; const auto *EV = cast(Cond); if (!isa(EV->getAggregateOperand())) return false; const auto *II = cast(EV->getAggregateOperand()); MVT RetVT; const Function *Callee = II->getCalledFunction(); Type *RetTy = cast(Callee->getReturnType())->getTypeAtIndex(0U); if (!isTypeLegal(RetTy, RetVT)) return false; if (RetVT != MVT::i32 && RetVT != MVT::i64) return false; AArch64CC::CondCode TmpCC; switch (II->getIntrinsicID()) { default: return false; case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: TmpCC = AArch64CC::VS; break; case Intrinsic::uadd_with_overflow: TmpCC = AArch64CC::HS; break; case Intrinsic::usub_with_overflow: TmpCC = AArch64CC::LO; break; case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: TmpCC = AArch64CC::NE; break; } // Check if both instructions are in the same basic block. if (II->getParent() != I->getParent()) return false; // Make sure nothing is in the way BasicBlock::const_iterator Start = I; BasicBlock::const_iterator End = II; for (auto Itr = std::prev(Start); Itr != End; --Itr) { // We only expect extractvalue instructions between the intrinsic and the // instruction to be selected. if (!isa(Itr)) return false; // Check that the extractvalue operand comes from the intrinsic. const auto *EVI = cast(Itr); if (EVI->getAggregateOperand() != II) return false; } CC = TmpCC; return true; } bool AArch64FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) { // FIXME: Handle more intrinsics. switch (II->getIntrinsicID()) { default: return false; case Intrinsic::frameaddress: { MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); MFI->setFrameAddressIsTaken(true); const AArch64RegisterInfo *RegInfo = static_cast( TM.getSubtargetImpl()->getRegisterInfo()); unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); unsigned SrcReg = FramePtr; // Recursively load frame address // ldr x0, [fp] // ldr x0, [x0] // ldr x0, [x0] // ... unsigned DestReg; unsigned Depth = cast(II->getOperand(0))->getZExtValue(); while (Depth--) { DestReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui), DestReg) .addReg(SrcReg).addImm(0); SrcReg = DestReg; } UpdateValueMap(II, SrcReg); return true; } case Intrinsic::memcpy: case Intrinsic::memmove: { const auto *MTI = cast(II); // Don't handle volatile. if (MTI->isVolatile()) return false; // Disable inlining for memmove before calls to ComputeAddress. Otherwise, // we would emit dead code because we don't currently handle memmoves. bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy); if (isa(MTI->getLength()) && IsMemCpy) { // Small memcpy's are common enough that we want to do them without a call // if possible. uint64_t Len = cast(MTI->getLength())->getZExtValue(); unsigned Alignment = MTI->getAlignment(); if (IsMemCpySmall(Len, Alignment)) { Address Dest, Src; if (!ComputeAddress(MTI->getRawDest(), Dest) || !ComputeAddress(MTI->getRawSource(), Src)) return false; if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment)) return true; } } if (!MTI->getLength()->getType()->isIntegerTy(64)) return false; if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; const char *IntrMemName = isa(II) ? "memcpy" : "memmove"; return LowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2); } case Intrinsic::memset: { const MemSetInst *MSI = cast(II); // Don't handle volatile. if (MSI->isVolatile()) return false; if (!MSI->getLength()->getType()->isIntegerTy(64)) return false; if (MSI->getDestAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; return LowerCallTo(II, "memset", II->getNumArgOperands() - 2); } case Intrinsic::trap: { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK)) .addImm(1); return true; } case Intrinsic::sqrt: { Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; unsigned Op0Reg = getRegForValue(II->getOperand(0)); if (!Op0Reg) return false; bool Op0IsKill = hasTrivialKill(II->getOperand(0)); unsigned ResultReg = FastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill); if (!ResultReg) return false; UpdateValueMap(II, ResultReg); return true; } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { // This implements the basic lowering of the xalu with overflow intrinsics. const Function *Callee = II->getCalledFunction(); auto *Ty = cast(Callee->getReturnType()); Type *RetTy = Ty->getTypeAtIndex(0U); Type *CondTy = Ty->getTypeAtIndex(1); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; if (VT != MVT::i32 && VT != MVT::i64) return false; const Value *LHS = II->getArgOperand(0); const Value *RHS = II->getArgOperand(1); // Canonicalize immediate to the RHS. if (isa(LHS) && !isa(RHS) && isCommutativeIntrinsic(II)) std::swap(LHS, RHS); unsigned LHSReg = getRegForValue(LHS); if (!LHSReg) return false; bool LHSIsKill = hasTrivialKill(LHS); // Check if the immediate can be encoded in the instruction and if we should // invert the instruction (adds -> subs) to handle negative immediates. bool UseImm = false; bool UseInverse = false; uint64_t Imm = 0; if (const auto *C = dyn_cast(RHS)) { if (C->isNegative()) { UseInverse = true; Imm = -(C->getSExtValue()); } else Imm = C->getZExtValue(); if (isUInt<12>(Imm)) UseImm = true; UseInverse = UseImm && UseInverse; } static const unsigned OpcTable[2][2][2] = { { {AArch64::ADDSWrr, AArch64::ADDSXrr}, {AArch64::ADDSWri, AArch64::ADDSXri} }, { {AArch64::SUBSWrr, AArch64::SUBSXrr}, {AArch64::SUBSWri, AArch64::SUBSXri} } }; unsigned Opc = 0; unsigned MulReg = 0; unsigned RHSReg = 0; bool RHSIsKill = false; AArch64CC::CondCode CC = AArch64CC::Invalid; bool Is64Bit = VT == MVT::i64; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::sadd_with_overflow: Opc = OpcTable[UseInverse][UseImm][Is64Bit]; CC = AArch64CC::VS; break; case Intrinsic::uadd_with_overflow: Opc = OpcTable[UseInverse][UseImm][Is64Bit]; CC = AArch64CC::HS; break; case Intrinsic::ssub_with_overflow: Opc = OpcTable[!UseInverse][UseImm][Is64Bit]; CC = AArch64CC::VS; break; case Intrinsic::usub_with_overflow: Opc = OpcTable[!UseInverse][UseImm][Is64Bit]; CC = AArch64CC::LO; break; case Intrinsic::smul_with_overflow: { CC = AArch64CC::NE; RHSReg = getRegForValue(RHS); if (!RHSReg) return false; RHSIsKill = hasTrivialKill(RHS); if (VT == MVT::i32) { MulReg = Emit_SMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned ShiftReg = Emit_LSR_ri(MVT::i64, MulReg, false, 32); MulReg = FastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true, AArch64::sub_32); ShiftReg = FastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true, AArch64::sub_32); unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWrs), CmpReg) .addReg(ShiftReg, getKillRegState(true)) .addReg(MulReg, getKillRegState(false)) .addImm(159); // 159 <-> asr #31 } else { assert(VT == MVT::i64 && "Unexpected value type."); MulReg = Emit_MUL_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned SMULHReg = FastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSXrs), CmpReg) .addReg(SMULHReg, getKillRegState(true)) .addReg(MulReg, getKillRegState(false)) .addImm(191); // 191 <-> asr #63 } break; } case Intrinsic::umul_with_overflow: { CC = AArch64CC::NE; RHSReg = getRegForValue(RHS); if (!RHSReg) return false; RHSIsKill = hasTrivialKill(RHS); if (VT == MVT::i32) { MulReg = Emit_UMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned CmpReg = createResultReg(TLI.getRegClassFor(MVT::i64)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSXrs), CmpReg) .addReg(AArch64::XZR, getKillRegState(true)) .addReg(MulReg, getKillRegState(false)) .addImm(96); // 96 <-> lsr #32 MulReg = FastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true, AArch64::sub_32); } else { assert(VT == MVT::i64 && "Unexpected value type."); MulReg = Emit_MUL_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned UMULHReg = FastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill, RHSReg, RHSIsKill); unsigned CmpReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSXrr), CmpReg) .addReg(AArch64::XZR, getKillRegState(true)) .addReg(UMULHReg, getKillRegState(false)); } break; } } if (!UseImm) { RHSReg = getRegForValue(RHS); if (!RHSReg) return false; RHSIsKill = hasTrivialKill(RHS); } unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); if (Opc) { MachineInstrBuilder MIB; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(LHSReg, getKillRegState(LHSIsKill)); if (UseImm) { MIB.addImm(Imm); MIB.addImm(0); } else MIB.addReg(RHSReg, getKillRegState(RHSIsKill)); } else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) .addReg(MulReg); unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy); assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr), ResultReg2) .addReg(AArch64::WZR, getKillRegState(true)) .addReg(AArch64::WZR, getKillRegState(true)) .addImm(getInvertedCondCode(CC)); UpdateValueMap(II, ResultReg, 2); return true; } } return false; } bool AArch64FastISel::SelectRet(const Instruction *I) { const ReturnInst *Ret = cast(I); const Function &F = *I->getParent()->getParent(); if (!FuncInfo.CanLowerReturn) return false; if (F.isVarArg()) return false; // Build a list of return value registers. SmallVector RetRegs; if (Ret->getNumOperands() > 0) { CallingConv::ID CC = F.getCallingConv(); SmallVector Outs; GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS : RetCC_AArch64_AAPCS; CCInfo.AnalyzeReturn(Outs, RetCC); // Only handle a single return value for now. if (ValLocs.size() != 1) return false; CCValAssign &VA = ValLocs[0]; const Value *RV = Ret->getOperand(0); // Don't bother handling odd stuff for now. if (VA.getLocInfo() != CCValAssign::Full) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; unsigned Reg = getRegForValue(RV); if (Reg == 0) return false; unsigned SrcReg = Reg + VA.getValNo(); unsigned DestReg = VA.getLocReg(); // Avoid a cross-class copy. This is very unlikely. if (!MRI.getRegClass(SrcReg)->contains(DestReg)) return false; EVT RVEVT = TLI.getValueType(RV->getType()); if (!RVEVT.isSimple()) return false; // Vectors (of > 1 lane) in big endian need tricky handling. if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1) return false; MVT RVVT = RVEVT.getSimpleVT(); if (RVVT == MVT::f128) return false; MVT DestVT = VA.getValVT(); // Special handling for extended integers. if (RVVT != DestVT) { if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) return false; if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) return false; bool isZExt = Outs[0].Flags.isZExt(); SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt); if (SrcReg == 0) return false; } // Make the copy. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); // Add register to return instruction. RetRegs.push_back(VA.getLocReg()); } MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::RET_ReallyLR)); for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) MIB.addReg(RetRegs[i], RegState::Implicit); return true; } bool AArch64FastISel::SelectTrunc(const Instruction *I) { Type *DestTy = I->getType(); Value *Op = I->getOperand(0); Type *SrcTy = Op->getType(); EVT SrcEVT = TLI.getValueType(SrcTy, true); EVT DestEVT = TLI.getValueType(DestTy, true); if (!SrcEVT.isSimple()) return false; if (!DestEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DestVT = DestEVT.getSimpleVT(); if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) return false; if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) return false; unsigned SrcReg = getRegForValue(Op); if (!SrcReg) return false; // If we're truncating from i64 to a smaller non-legal type then generate an // AND. Otherwise, we know the high bits are undefined and a truncate doesn't // generate any code. if (SrcVT == MVT::i64) { uint64_t Mask = 0; switch (DestVT.SimpleTy) { default: // Trunc i64 to i32 is handled by the target-independent fast-isel. return false; case MVT::i1: Mask = 0x1; break; case MVT::i8: Mask = 0xff; break; case MVT::i16: Mask = 0xffff; break; } // Issue an extract_subreg to get the lower 32-bits. unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true, AArch64::sub_32); MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass); // Create the AND instruction which performs the actual truncation. unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ANDReg) .addReg(Reg32) .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32)); SrcReg = ANDReg; } UpdateValueMap(I, SrcReg); return true; } unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) { assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 || DestVT == MVT::i64) && "Unexpected value type."); // Handle i8 and i16 as i32. if (DestVT == MVT::i8 || DestVT == MVT::i16) DestVT = MVT::i32; if (isZExt) { MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass); unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), ResultReg) .addReg(SrcReg) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); if (DestVT == MVT::i64) { // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd. unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBREG_TO_REG), Reg64) .addImm(0) .addReg(ResultReg) .addImm(AArch64::sub_32); ResultReg = Reg64; } return ResultReg; } else { if (DestVT == MVT::i64) { // FIXME: We're SExt i1 to i64. return 0; } unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri), ResultReg) .addReg(SrcReg) .addImm(0) .addImm(0); return ResultReg; } } unsigned AArch64FastISel::Emit_MUL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { unsigned Opc, ZReg; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: case MVT::i16: case MVT::i32: RetVT = MVT::i32; Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break; case MVT::i64: Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break; } // Create the base instruction, then add the operands. unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill)) .addReg(Op1, getKillRegState(Op1IsKill)) .addReg(ZReg, getKillRegState(true)); return ResultReg; } unsigned AArch64FastISel::Emit_SMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { if (RetVT != MVT::i64) return 0; // Create the base instruction, then add the operands. unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SMADDLrrr), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill)) .addReg(Op1, getKillRegState(Op1IsKill)) .addReg(AArch64::XZR, getKillRegState(true)); return ResultReg; } unsigned AArch64FastISel::Emit_UMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { if (RetVT != MVT::i64) return 0; // Create the base instruction, then add the operands. unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::UMADDLrrr), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill)) .addReg(Op1, getKillRegState(Op1IsKill)) .addReg(AArch64::XZR, getKillRegState(true)); return ResultReg; } unsigned AArch64FastISel::Emit_LSL_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Shift) { unsigned Opc, ImmR, ImmS; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 7 - Shift; break; case MVT::i16: Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 15 - Shift; break; case MVT::i32: Opc = AArch64::UBFMWri; ImmR = -Shift % 32; ImmS = 31 - Shift; break; case MVT::i64: Opc = AArch64::UBFMXri; ImmR = -Shift % 64; ImmS = 63 - Shift; break; } RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy); return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, ImmR, ImmS); } unsigned AArch64FastISel::Emit_LSR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Shift) { unsigned Opc, ImmS; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::UBFMWri; ImmS = 7; break; case MVT::i16: Opc = AArch64::UBFMWri; ImmS = 15; break; case MVT::i32: Opc = AArch64::UBFMWri; ImmS = 31; break; case MVT::i64: Opc = AArch64::UBFMXri; ImmS = 63; break; } RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy); return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, Shift, ImmS); } unsigned AArch64FastISel::Emit_ASR_ri(MVT RetVT, unsigned Op0, bool Op0IsKill, uint64_t Shift) { unsigned Opc, ImmS; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::SBFMWri; ImmS = 7; break; case MVT::i16: Opc = AArch64::SBFMWri; ImmS = 15; break; case MVT::i32: Opc = AArch64::SBFMWri; ImmS = 31; break; case MVT::i64: Opc = AArch64::SBFMXri; ImmS = 63; break; } RetVT.SimpleTy = std::max(MVT::i32, RetVT.SimpleTy); return FastEmitInst_rii(Opc, TLI.getRegClassFor(RetVT), Op0, Op0IsKill, Shift, ImmS); } unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt) { assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?"); // FastISel does not have plumbing to deal with extensions where the SrcVT or // DestVT are odd things, so test to make sure that they are both types we can // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise // bail out to SelectionDAG. if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32) && (DestVT != MVT::i64)) || ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16) && (SrcVT != MVT::i32))) return 0; unsigned Opc; unsigned Imm = 0; switch (SrcVT.SimpleTy) { default: return 0; case MVT::i1: return Emiti1Ext(SrcReg, DestVT, isZExt); case MVT::i8: if (DestVT == MVT::i64) Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; else Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri; Imm = 7; break; case MVT::i16: if (DestVT == MVT::i64) Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; else Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri; Imm = 15; break; case MVT::i32: assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?"); Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; Imm = 31; break; } // Handle i8 and i16 as i32. if (DestVT == MVT::i8 || DestVT == MVT::i16) DestVT = MVT::i32; else if (DestVT == MVT::i64) { unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBREG_TO_REG), Src64) .addImm(0) .addReg(SrcReg) .addImm(AArch64::sub_32); SrcReg = Src64; } unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) .addReg(SrcReg) .addImm(0) .addImm(Imm); return ResultReg; } bool AArch64FastISel::SelectIntExt(const Instruction *I) { // On ARM, in general, integer casts don't involve legal types; this code // handles promotable integers. The high bits for a type smaller than // the register size are assumed to be undefined. Type *DestTy = I->getType(); Value *Src = I->getOperand(0); Type *SrcTy = Src->getType(); bool isZExt = isa(I); unsigned SrcReg = getRegForValue(Src); if (!SrcReg) return false; EVT SrcEVT = TLI.getValueType(SrcTy, true); EVT DestEVT = TLI.getValueType(DestTy, true); if (!SrcEVT.isSimple()) return false; if (!DestEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DestVT = DestEVT.getSimpleVT(); unsigned ResultReg = 0; // Check if it is an argument and if it is already zero/sign-extended. if (const auto *Arg = dyn_cast(Src)) { if ((isZExt && Arg->hasZExtAttr()) || (!isZExt && Arg->hasSExtAttr())) { if (DestVT == MVT::i64) { ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBREG_TO_REG), ResultReg) .addImm(0) .addReg(SrcReg) .addImm(AArch64::sub_32); } else ResultReg = SrcReg; } } if (!ResultReg) ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) { EVT DestEVT = TLI.getValueType(I->getType(), true); if (!DestEVT.isSimple()) return false; MVT DestVT = DestEVT.getSimpleVT(); if (DestVT != MVT::i64 && DestVT != MVT::i32) return false; unsigned DivOpc; bool is64bit = (DestVT == MVT::i64); switch (ISDOpcode) { default: return false; case ISD::SREM: DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr; break; case ISD::UREM: DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr; break; } unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr; unsigned Src0Reg = getRegForValue(I->getOperand(0)); if (!Src0Reg) return false; unsigned Src1Reg = getRegForValue(I->getOperand(1)); if (!Src1Reg) return false; unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg) .addReg(Src0Reg) .addReg(Src1Reg); // The remainder is computed as numerator - (quotient * denominator) using the // MSUB instruction. unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg) .addReg(QuotReg) .addReg(Src1Reg) .addReg(Src0Reg); UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectMul(const Instruction *I) { EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true); if (!SrcEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); // Must be simple value type. Don't handle vectors. if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) return false; unsigned Src0Reg = getRegForValue(I->getOperand(0)); if (!Src0Reg) return false; bool Src0IsKill = hasTrivialKill(I->getOperand(0)); unsigned Src1Reg = getRegForValue(I->getOperand(1)); if (!Src1Reg) return false; bool Src1IsKill = hasTrivialKill(I->getOperand(1)); unsigned ResultReg = Emit_MUL_rr(SrcVT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectShift(const Instruction *I, bool IsLeftShift, bool IsArithmetic) { EVT RetEVT = TLI.getValueType(I->getType(), true); if (!RetEVT.isSimple()) return false; MVT RetVT = RetEVT.getSimpleVT(); if (!isa(I->getOperand(1))) return false; unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (!Op0Reg) return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); uint64_t ShiftVal = cast(I->getOperand(1))->getZExtValue(); unsigned ResultReg; if (IsLeftShift) ResultReg = Emit_LSL_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal); else { if (IsArithmetic) ResultReg = Emit_ASR_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal); else ResultReg = Emit_LSR_ri(RetVT, Op0Reg, Op0IsKill, ShiftVal); } if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::SelectBitCast(const Instruction *I) { MVT RetVT, SrcVT; if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT)) return false; if (!isTypeLegal(I->getType(), RetVT)) return false; unsigned Opc; if (RetVT == MVT::f32 && SrcVT == MVT::i32) Opc = AArch64::FMOVWSr; else if (RetVT == MVT::f64 && SrcVT == MVT::i64) Opc = AArch64::FMOVXDr; else if (RetVT == MVT::i32 && SrcVT == MVT::f32) Opc = AArch64::FMOVSWr; else if (RetVT == MVT::i64 && SrcVT == MVT::f64) Opc = AArch64::FMOVDXr; else return false; unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (!Op0Reg) return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); unsigned ResultReg = FastEmitInst_r(Opc, TLI.getRegClassFor(RetVT), Op0Reg, Op0IsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { default: break; case Instruction::Load: return SelectLoad(I); case Instruction::Store: return SelectStore(I); case Instruction::Br: return SelectBranch(I); case Instruction::IndirectBr: return SelectIndirectBr(I); case Instruction::FCmp: case Instruction::ICmp: return SelectCmp(I); case Instruction::Select: return SelectSelect(I); case Instruction::FPExt: return SelectFPExt(I); case Instruction::FPTrunc: return SelectFPTrunc(I); case Instruction::FPToSI: return SelectFPToInt(I, /*Signed=*/true); case Instruction::FPToUI: return SelectFPToInt(I, /*Signed=*/false); case Instruction::SIToFP: return SelectIntToFP(I, /*Signed=*/true); case Instruction::UIToFP: return SelectIntToFP(I, /*Signed=*/false); case Instruction::SRem: return SelectRem(I, ISD::SREM); case Instruction::URem: return SelectRem(I, ISD::UREM); case Instruction::Ret: return SelectRet(I); case Instruction::Trunc: return SelectTrunc(I); case Instruction::ZExt: case Instruction::SExt: return SelectIntExt(I); // FIXME: All of these should really be handled by the target-independent // selector -> improve FastISel tblgen. case Instruction::Mul: return SelectMul(I); case Instruction::Shl: return SelectShift(I, /*IsLeftShift=*/true, /*IsArithmetic=*/false); case Instruction::LShr: return SelectShift(I, /*IsLeftShift=*/false, /*IsArithmetic=*/false); case Instruction::AShr: return SelectShift(I, /*IsLeftShift=*/false, /*IsArithmetic=*/true); case Instruction::BitCast: return SelectBitCast(I); } return false; // Silence warnings. (void)&CC_AArch64_DarwinPCS_VarArg; } namespace llvm { llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) { return new AArch64FastISel(funcInfo, libInfo); } }