//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TwoAddress instruction pass which is used // by most register allocators. Two-Address instructions are rewritten // from: // // A = B op C // // to: // // A = B // A op= C // // Note that if a register allocator chooses to use this pass, that it // has to be capable of handling the non-SSA nature of these rewritten // virtual registers. // // It is also worth noting that the duplicate operand of the two // address instruction is removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "twoaddrinstr" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" using namespace llvm; namespace { Statistic<> numTwoAddressInstrs("twoaddressinstruction", "Number of two-address instructions"); struct TwoAddressInstructionPass : public MachineFunctionPass { virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// runOnMachineFunction - pass entry point bool runOnMachineFunction(MachineFunction&); }; RegisterPass X("twoaddressinstruction", "Two-Address instruction pass"); }; const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo(); void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(PHIEliminationID); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - Reduce two-address instructions to two /// operands. /// bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { DEBUG(std::cerr << "Machine Function\n"); const TargetMachine &TM = MF.getTarget(); const MRegisterInfo &MRI = *TM.getRegisterInfo(); const TargetInstrInfo &TII = *TM.getInstrInfo(); LiveVariables* LV = getAnalysisToUpdate(); bool MadeChange = false; DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n"); DEBUG(std::cerr << "********** Function: " << MF.getFunction()->getName() << '\n'); for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) { for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); mi != me; ++mi) { unsigned opcode = mi->getOpcode(); // ignore if it is not a two-address instruction if (!TII.isTwoAddrInstr(opcode)) continue; ++numTwoAddressInstrs; DEBUG(std::cerr << '\t'; mi->print(std::cerr, &TM)); assert(mi->getOperand(1).isRegister() && mi->getOperand(1).getReg() && mi->getOperand(1).isUse() && "two address instruction invalid"); // if the two operands are the same we just remove the use // and mark the def as def&use, otherwise we have to insert a copy. if (mi->getOperand(0).getReg() != mi->getOperand(1).getReg()) { // rewrite: // a = b op c // to: // a = b // a = a op c unsigned regA = mi->getOperand(0).getReg(); unsigned regB = mi->getOperand(1).getReg(); assert(MRegisterInfo::isVirtualRegister(regA) && MRegisterInfo::isVirtualRegister(regB) && "cannot update physical register live information"); // first make sure we do not have a use of a in the // instruction (a = b + a for example) because our // transformation will not work. This should never occur // because we are in SSA form. #ifndef NDEBUG for (unsigned i = 1; i != mi->getNumOperands(); ++i) assert(!mi->getOperand(i).isRegister() || mi->getOperand(i).getReg() != regA); #endif const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA); MRI.copyRegToReg(*mbbi, mi, regA, regB, rc); MachineBasicBlock::iterator prevMi = prior(mi); DEBUG(std::cerr << "\t\tprepend:\t"; prevMi->print(std::cerr, &TM)); if (LV) { // update live variables for regA LiveVariables::VarInfo& varInfo = LV->getVarInfo(regA); varInfo.DefInst = prevMi; // update live variables for regB if (LV->removeVirtualRegisterKilled(regB, mbbi, mi)) LV->addVirtualRegisterKilled(regB, prevMi); if (LV->removeVirtualRegisterDead(regB, mbbi, mi)) LV->addVirtualRegisterDead(regB, prevMi); } // replace all occurences of regB with regA for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) { if (mi->getOperand(i).isRegister() && mi->getOperand(i).getReg() == regB) mi->SetMachineOperandReg(i, regA); } } assert(mi->getOperand(0).isDef()); mi->getOperand(0).setUse(); mi->RemoveOperand(1); MadeChange = true; DEBUG(std::cerr << "\t\trewrite to:\t"; mi->print(std::cerr, &TM)); } } return MadeChange; }