//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG, and has a tendancy to // make instructions dead, so a subsequent DIE pass is useful. This pass is // where algebraic simplification happens. // // This pass combines things like: // %Y = add int 1, %X // %Z = add int 1, %Y // into: // %Z = add int 2, %X // // This is a simple worklist driven algorithm. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ConstantHandling.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/iPHINode.h" #include "llvm/iOperators.h" #include "llvm/Pass.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/InstVisitor.h" #include "Support/StatisticReporter.h" #include static Statistic<> NumCombined("instcombine\t- Number of insts combined"); namespace { class InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. std::vector WorkList; void AddUsesToWorkList(Instruction &I) { // The instruction was simplified, add all users of the instruction to // the work lists because they might get more simplified now... // for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) WorkList.push_back(cast(*UI)); } public: virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitAdd(BinaryOperator &I); Instruction *visitSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitDiv(BinaryOperator &I); Instruction *visitRem(BinaryOperator &I); Instruction *visitAnd(BinaryOperator &I); Instruction *visitOr (BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitSetCondInst(BinaryOperator &I); Instruction *visitShiftInst(Instruction &I); Instruction *visitCastInst(CastInst &CI); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction &I) { return 0; } // InsertNewInstBefore - insert an instruction New before instruction Old // in the program. Add the new instruction to the worklist. // void InsertNewInstBefore(Instruction *New, Instruction &Old) { BasicBlock *BB = Old.getParent(); BB->getInstList().insert(&Old, New); // Insert inst WorkList.push_back(New); // Add to worklist } // ReplaceInstUsesWith - This method is to be used when an instruction is // found to be dead, replacable with another preexisting expression. Here // we add all uses of I to the worklist, replace all uses of I with the new // value, then return I, so that the inst combiner will know that I was // modified. // Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { AddUsesToWorkList(I); // Add all modified instrs to worklist I.replaceAllUsesWith(V); return &I; } }; RegisterOpt X("instcombine", "Combine redundant instructions"); } // Make sure that this instruction has a constant on the right hand side if it // has any constant arguments. If not, fix it an return true. // static bool SimplifyBinOp(BinaryOperator &I) { if (isa(I.getOperand(0)) && !isa(I.getOperand(1))) return !I.swapOperands(); return false; } // dyn_castNegInst - Given a 'sub' instruction, return the RHS of the // instruction if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegInst(Value *V) { Instruction *I = dyn_cast(V); if (!I || I->getOpcode() != Instruction::Sub) return 0; if (I->getOperand(0) == Constant::getNullValue(I->getType())) return I->getOperand(1); return 0; } static inline Value *dyn_castNotInst(Value *V) { Instruction *I = dyn_cast(V); if (!I || I->getOpcode() != Instruction::Xor) return 0; if (ConstantIntegral *CI = dyn_cast(I->getOperand(1))) if (CI->isAllOnesValue()) return I->getOperand(0); return 0; } Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // Eliminate 'add int %X, 0' if (RHS == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, LHS); // -A + B --> B - A if (Value *V = dyn_castNegInst(LHS)) return BinaryOperator::create(Instruction::Sub, RHS, V); // A + -B --> A - B if (Value *V = dyn_castNegInst(RHS)) return BinaryOperator::create(Instruction::Sub, LHS, V); // Simplify add instructions with a constant RHS... if (Constant *Op2 = dyn_cast(RHS)) { if (BinaryOperator *ILHS = dyn_cast(LHS)) { if (ILHS->getOpcode() == Instruction::Add && isa(ILHS->getOperand(1))) { // Fold: // %Y = add int %X, 1 // %Z = add int %Y, 1 // into: // %Z = add int %X, 2 // if (Constant *Val = *Op2 + *cast(ILHS->getOperand(1))) { I.setOperand(0, ILHS->getOperand(0)); I.setOperand(1, Val); return &I; } } } } return Changed ? &I : 0; } Instruction *InstCombiner::visitSub(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1) // sub X, X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // If this is a subtract instruction with a constant RHS, convert it to an add // instruction of a negative constant // if (Constant *Op2 = dyn_cast(Op1)) if (Constant *RHS = *Constant::getNullValue(I.getType()) - *Op2) // 0 - RHS return BinaryOperator::create(Instruction::Add, Op0, RHS, I.getName()); // If this is a 'B = x-(-A)', change to B = x+A... if (Value *V = dyn_castNegInst(Op1)) return BinaryOperator::create(Instruction::Add, Op0, V); // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression is // not used by anyone else... // if (BinaryOperator *Op1I = dyn_cast(Op1)) if (Op1I->use_size() == 1 && Op1I->getOpcode() == Instruction::Sub) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::create(Instruction::Add, Op0, Op1); } return 0; } Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *Op1 = I.getOperand(0); // Simplify mul instructions with a constant RHS... if (Constant *Op2 = dyn_cast(I.getOperand(1))) { if (I.getType()->isIntegral() && cast(Op2)->equalsInt(1)) return ReplaceInstUsesWith(I, Op1); // Eliminate 'mul int %X, 1' if (I.getType()->isIntegral() && cast(Op2)->equalsInt(2)) // Convert 'mul int %X, 2' to 'add int %X, %X' return BinaryOperator::create(Instruction::Add, Op1, Op1, I.getName()); if (Op2->isNullValue()) return ReplaceInstUsesWith(I, Op2); // Eliminate 'mul int %X, 0' } return Changed ? &I : 0; } Instruction *InstCombiner::visitDiv(BinaryOperator &I) { // div X, 1 == X if (ConstantInt *RHS = dyn_cast(I.getOperand(1))) if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, I.getOperand(0)); return 0; } Instruction *InstCombiner::visitRem(BinaryOperator &I) { // rem X, 1 == 0 if (ConstantInt *RHS = dyn_cast(I.getOperand(1))) if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return 0; } // isMaxValueMinusOne - return true if this is Max-1 static bool isMaxValueMinusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) { // Calculate -1 casted to the right type... unsigned TypeBits = C->getType()->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return CU->getValue() == Val-1; } const ConstantSInt *CS = cast(C); // Calculate 0111111111..11111 unsigned TypeBits = C->getType()->getPrimitiveSize()*8; int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return CS->getValue() == Val-1; } // isMinValuePlusOne - return true if this is Min+1 static bool isMinValuePlusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) return CU->getValue() == 1; const ConstantSInt *CS = cast(C); // Calculate 1111111111000000000000 unsigned TypeBits = C->getType()->getPrimitiveSize()*8; int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return CS->getValue() == Val+1; } Instruction *InstCombiner::visitAnd(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // and X, X = X and X, 0 == 0 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, Op1); // and X, -1 == X if (ConstantIntegral *RHS = dyn_cast(Op1)) if (RHS->isAllOnesValue()) return ReplaceInstUsesWith(I, Op0); return Changed ? &I : 0; } Instruction *InstCombiner::visitOr(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // or X, X = X or X, 0 == X if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, Op0); // or X, -1 == -1 if (ConstantIntegral *RHS = dyn_cast(Op1)) if (RHS->isAllOnesValue()) return ReplaceInstUsesWith(I, Op1); return Changed ? &I : 0; } Instruction *InstCombiner::visitXor(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // xor X, X = 0 if (Op0 == Op1) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (ConstantIntegral *Op1C = dyn_cast(Op1)) { // xor X, 0 == X if (Op1C->isNullValue()) return ReplaceInstUsesWith(I, Op0); // xor (xor X, -1), -1 = not (not X) = X if (Op1C->isAllOnesValue()) if (Value *X = dyn_castNotInst(Op0)) return ReplaceInstUsesWith(I, X); } return Changed ? &I : 0; } // AddOne, SubOne - Add or subtract a constant one from an integer constant... static Constant *AddOne(ConstantInt *C) { Constant *Result = *C + *ConstantInt::get(C->getType(), 1); assert(Result && "Constant folding integer addition failed!"); return Result; } static Constant *SubOne(ConstantInt *C) { Constant *Result = *C - *ConstantInt::get(C->getType(), 1); assert(Result && "Constant folding integer addition failed!"); return Result; } // isTrueWhenEqual - Return true if the specified setcondinst instruction is // true when both operands are equal... // static bool isTrueWhenEqual(Instruction &I) { return I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetGE || I.getOpcode() == Instruction::SetLE; } Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) { bool Changed = SimplifyBinOp(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); // setcc X, X if (Op0 == Op1) return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I))); // setcc , 0 - Global value addresses are never null! if (isa(Op0) && isa(Op1)) return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I))); // setcc's with boolean values can always be turned into bitwise operations if (Ty == Type::BoolTy) { // If this is <, >, or !=, we can change this into a simple xor instruction if (!isTrueWhenEqual(I)) return BinaryOperator::create(Instruction::Xor, Op0, Op1, I.getName()); // Otherwise we need to make a temporary intermediate instruction and insert // it into the instruction stream. This is what we are after: // // seteq bool %A, %B -> ~(A^B) // setle bool %A, %B -> ~A | B // setge bool %A, %B -> A | ~B // if (I.getOpcode() == Instruction::SetEQ) { // seteq case Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1, I.getName()+"tmp"); InsertNewInstBefore(Xor, I); return BinaryOperator::createNot(Xor, I.getName()); } // Handle the setXe cases... assert(I.getOpcode() == Instruction::SetGE || I.getOpcode() == Instruction::SetLE); if (I.getOpcode() == Instruction::SetGE) std::swap(Op0, Op1); // Change setge -> setle // Now we just have the SetLE case. Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::create(Instruction::Or, Not, Op1, I.getName()); } // Check to see if we are doing one of many comparisons against constant // integers at the end of their ranges... // if (ConstantInt *CI = dyn_cast(Op1)) { // Check to see if we are comparing against the minimum or maximum value... if (CI->isMinValue()) { if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName()); if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName()); } else if (CI->isMaxValue()) { if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName()); if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName()); // Comparing against a value really close to min or max? } else if (isMinValuePlusOne(CI)) { if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN return BinaryOperator::create(Instruction::SetEQ, Op0, SubOne(CI), I.getName()); if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN return BinaryOperator::create(Instruction::SetNE, Op0, SubOne(CI), I.getName()); } else if (isMaxValueMinusOne(CI)) { if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX return BinaryOperator::create(Instruction::SetEQ, Op0, AddOne(CI), I.getName()); if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX return BinaryOperator::create(Instruction::SetNE, Op0, AddOne(CI), I.getName()); } } return Changed ? &I : 0; } Instruction *InstCombiner::visitShiftInst(Instruction &I) { assert(I.getOperand(1)->getType() == Type::UByteTy); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Type::UByteTy) || Op0 == Constant::getNullValue(Op0->getType())) return ReplaceInstUsesWith(I, Op0); // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr of // a signed value. // if (ConstantUInt *CUI = dyn_cast(Op1)) { unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8; if (CUI->getValue() >= TypeBits && !(Op0->getType()->isSigned() && I.getOpcode() == Instruction::Shr)) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); } return 0; } // isCIntegral - For the purposes of casting, we allow conversion of sizes and // stuff as long as the value type acts basically integral like. // static bool isCIntegral(const Type *Ty) { return Ty->isIntegral() || Ty == Type::BoolTy; } // isEliminableCastOfCast - Return true if it is valid to eliminate the CI // instruction. // static inline bool isEliminableCastOfCast(const CastInst &CI, const CastInst *CSrc) { assert(CI.getOperand(0) == CSrc); const Type *SrcTy = CSrc->getOperand(0)->getType(); const Type *MidTy = CSrc->getType(); const Type *DstTy = CI.getType(); // It is legal to eliminate the instruction if casting A->B->A if the sizes // are identical and the bits don't get reinterpreted (for example // int->float->int would not be allowed) if (SrcTy == DstTy && SrcTy->isLosslesslyConvertableTo(MidTy)) return true; // Allow free casting and conversion of sizes as long as the sign doesn't // change... if (isCIntegral(SrcTy) && isCIntegral(MidTy) && isCIntegral(DstTy)) { unsigned SrcSize = SrcTy->getPrimitiveSize(); unsigned MidSize = MidTy->getPrimitiveSize(); unsigned DstSize = DstTy->getPrimitiveSize(); // Cases where we are monotonically decreasing the size of the type are // always ok, regardless of what sign changes are going on. // if (SrcSize >= MidSize && MidSize >= DstSize) return true; // If we are monotonically growing, things are more complex. // if (SrcSize <= MidSize && MidSize <= DstSize) { // We have eight combinations of signedness to worry about. Here's the // table: static const int SignTable[8] = { // CODE, SrcSigned, MidSigned, DstSigned, Comment 1, // U U U Always ok 1, // U U S Always ok 3, // U S U Ok iff SrcSize != MidSize 3, // U S S Ok iff SrcSize != MidSize 0, // S U U Never ok 2, // S U S Ok iff MidSize == DstSize 1, // S S U Always ok 1, // S S S Always ok }; // Choose an action based on the current entry of the signtable that this // cast of cast refers to... unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned(); switch (SignTable[Row]) { case 0: return false; // Never ok case 1: return true; // Always ok case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize case 3: // Ok iff SrcSize != MidSize return SrcSize != MidSize || SrcTy == Type::BoolTy; default: assert(0 && "Bad entry in sign table!"); } } } // Otherwise, we cannot succeed. Specifically we do not want to allow things // like: short -> ushort -> uint, because this can create wrong results if // the input short is negative! // return false; } // CastInst simplification // Instruction *InstCombiner::visitCastInst(CastInst &CI) { // If the user is casting a value to the same type, eliminate this cast // instruction... if (CI.getType() == CI.getOperand(0)->getType()) return ReplaceInstUsesWith(CI, CI.getOperand(0)); // If casting the result of another cast instruction, try to eliminate this // one! // if (CastInst *CSrc = dyn_cast(CI.getOperand(0))) { if (isEliminableCastOfCast(CI, CSrc)) { // This instruction now refers directly to the cast's src operand. This // has a good chance of making CSrc dead. CI.setOperand(0, CSrc->getOperand(0)); return &CI; } // If this is an A->B->A cast, and we are dealing with integral types, try // to convert this into a logical 'and' instruction. // if (CSrc->getOperand(0)->getType() == CI.getType() && CI.getType()->isIntegral() && CSrc->getType()->isIntegral() && CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() && CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){ assert(CSrc->getType() != Type::ULongTy && "Cannot have type bigger than ulong!"); unsigned AndValue = (1U << CSrc->getType()->getPrimitiveSize()*8)-1; Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue); return BinaryOperator::create(Instruction::And, CSrc->getOperand(0), AndOp); } } return 0; } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode &PN) { // If the PHI node only has one incoming value, eliminate the PHI node... if (PN.getNumIncomingValues() == 0) return ReplaceInstUsesWith(PN, Constant::getNullValue(PN.getType())); if (PN.getNumIncomingValues() == 1) return ReplaceInstUsesWith(PN, PN.getIncomingValue(0)); // Otherwise if all of the incoming values are the same for the PHI, replace // the PHI node with the incoming value. // Value *InVal = PN.getIncomingValue(0); for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) if (PN.getIncomingValue(i) != InVal) return 0; // Not the same, bail out. // All of the incoming values are the same, replace the PHI node now. return ReplaceInstUsesWith(PN, InVal); } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Is it 'getelementptr %P, uint 0' or 'getelementptr %P' // If so, eliminate the noop. if ((GEP.getNumOperands() == 2 && GEP.getOperand(1) == Constant::getNullValue(Type::UIntTy)) || GEP.getNumOperands() == 1) return ReplaceInstUsesWith(GEP, GEP.getOperand(0)); // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // if (GetElementPtrInst *Src = dyn_cast(GEP.getOperand(0))) { std::vector Indices; // Can we combine the two pointer arithmetics offsets? if (Src->getNumOperands() == 2 && isa(Src->getOperand(1)) && isa(GEP.getOperand(1))) { // Replace the index list on this GEP with the index on the getelementptr Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end()); Indices[0] = *cast(Src->getOperand(1)) + *cast(GEP.getOperand(1)); assert(Indices[0] != 0 && "Constant folding of uint's failed!?"); } else if (*GEP.idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName()); } else if (GlobalValue *GV = dyn_cast(GEP.getOperand(0))) { // GEP of global variable. If all of the indices for this GEP are // constants, we can promote this to a constexpr instead of an instruction. // Scan for nonconstants... std::vector Indices; User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); for (; I != E && isa(*I); ++I) Indices.push_back(cast(*I)); if (I == E) { // If they are all constants... ConstantExpr *CE = ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices); // Replace all uses of the GEP with the new constexpr... return ReplaceInstUsesWith(GEP, CE); } } return 0; } bool InstCombiner::runOnFunction(Function &F) { bool Changed = false; WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F)); while (!WorkList.empty()) { Instruction *I = WorkList.back(); // Get an instruction from the worklist WorkList.pop_back(); // Now that we have an instruction, try combining it to simplify it... if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), WorkList.end()); ReplaceInstWithInst(I, Result); } else { BasicBlock::iterator II = I; // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (dceInstruction(II)) { // Instructions may end up in the worklist more than once. Erase them // all. WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), WorkList.end()); Result = 0; } } if (Result) { WorkList.push_back(Result); AddUsesToWorkList(*Result); } Changed = true; } } return Changed; } Pass *createInstructionCombiningPass() { return new InstCombiner(); }