//===-- MipsISelDAGToDAG.cpp - A Dag to Dag Inst Selector for Mips --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the MIPS target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-isel" #include "Mips.h" #include "MipsAnalyzeImmediate.h" #include "MipsMachineFunction.h" #include "MipsRegisterInfo.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Support/CFG.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MipsDAGToDAGISel - MIPS specific code to select MIPS machine // instructions for SelectionDAG operations. //===----------------------------------------------------------------------===// namespace { class MipsDAGToDAGISel : public SelectionDAGISel { /// TM - Keep a reference to MipsTargetMachine. MipsTargetMachine &TM; /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can /// make the right decision when generating code for different targets. const MipsSubtarget &Subtarget; public: explicit MipsDAGToDAGISel(MipsTargetMachine &tm) : SelectionDAGISel(tm), TM(tm), Subtarget(tm.getSubtarget()) {} // Pass Name virtual const char *getPassName() const { return "MIPS DAG->DAG Pattern Instruction Selection"; } virtual bool runOnMachineFunction(MachineFunction &MF); private: // Include the pieces autogenerated from the target description. #include "MipsGenDAGISel.inc" /// getTargetMachine - Return a reference to the TargetMachine, casted /// to the target-specific type. const MipsTargetMachine &getTargetMachine() { return static_cast(TM); } /// getInstrInfo - Return a reference to the TargetInstrInfo, casted /// to the target-specific type. const MipsInstrInfo *getInstrInfo() { return getTargetMachine().getInstrInfo(); } SDNode *getGlobalBaseReg(); std::pair SelectMULT(SDNode *N, unsigned Opc, DebugLoc dl, EVT Ty, bool HasLo, bool HasHi); SDNode *Select(SDNode *N); // Complex Pattern. bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Offset); // getImm - Return a target constant with the specified value. inline SDValue getImm(const SDNode *Node, unsigned Imm) { return CurDAG->getTargetConstant(Imm, Node->getValueType(0)); } void ProcessFunctionAfterISel(MachineFunction &MF); bool ReplaceUsesWithZeroReg(MachineRegisterInfo *MRI, const MachineInstr&); void InitGlobalBaseReg(MachineFunction &MF); virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); }; } // Insert instructions to initialize the global base register in the // first MBB of the function. When the ABI is O32 and the relocation model is // PIC, the necessary instructions are emitted later to prevent optimization // passes from moving them. void MipsDAGToDAGISel::InitGlobalBaseReg(MachineFunction &MF) { MipsFunctionInfo *MipsFI = MF.getInfo(); if (!MipsFI->globalBaseRegSet()) return; MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator I = MBB.begin(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc(); unsigned V0, V1, V2, GlobalBaseReg = MipsFI->getGlobalBaseReg(); const TargetRegisterClass *RC; if (Subtarget.isABI_N64()) RC = (const TargetRegisterClass*)&Mips::CPU64RegsRegClass; else if (Subtarget.inMips16Mode()) RC = (const TargetRegisterClass*)&Mips::CPU16RegsRegClass; else RC = (const TargetRegisterClass*)&Mips::CPURegsRegClass; V0 = RegInfo.createVirtualRegister(RC); V1 = RegInfo.createVirtualRegister(RC); V2 = RegInfo.createVirtualRegister(RC); if (Subtarget.isABI_N64()) { MF.getRegInfo().addLiveIn(Mips::T9_64); MBB.addLiveIn(Mips::T9_64); // lui $v0, %hi(%neg(%gp_rel(fname))) // daddu $v1, $v0, $t9 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) .addReg(Mips::T9_64); BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } if (Subtarget.inMips16Mode()) { BuildMI(MBB, I, DL, TII.get(Mips::LiRxImmX16), V0) .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII.get(Mips::AddiuRxPcImmX16), V1) .addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO); BuildMI(MBB, I, DL, TII.get(Mips::SllX16), V2).addReg(V0).addImm(16); BuildMI(MBB, I, DL, TII.get(Mips::AdduRxRyRz16), GlobalBaseReg) .addReg(V1).addReg(V2); return; } if (MF.getTarget().getRelocationModel() == Reloc::Static) { // Set global register to __gnu_local_gp. // // lui $v0, %hi(__gnu_local_gp) // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); return; } MF.getRegInfo().addLiveIn(Mips::T9); MBB.addLiveIn(Mips::T9); if (Subtarget.isABI_N32()) { // lui $v0, %hi(%neg(%gp_rel(fname))) // addu $v1, $v0, $t9 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } assert(Subtarget.isABI_O32()); // For O32 ABI, the following instruction sequence is emitted to initialize // the global base register: // // 0. lui $2, %hi(_gp_disp) // 1. addiu $2, $2, %lo(_gp_disp) // 2. addu $globalbasereg, $2, $t9 // // We emit only the last instruction here. // // GNU linker requires that the first two instructions appear at the beginning // of a function and no instructions be inserted before or between them. // The two instructions are emitted during lowering to MC layer in order to // avoid any reordering. // // Register $2 (Mips::V0) is added to the list of live-in registers to ensure // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) // reads it. MF.getRegInfo().addLiveIn(Mips::V0); MBB.addLiveIn(Mips::V0); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) .addReg(Mips::V0).addReg(Mips::T9); } bool MipsDAGToDAGISel::ReplaceUsesWithZeroReg(MachineRegisterInfo *MRI, const MachineInstr& MI) { unsigned DstReg = 0, ZeroReg = 0; // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". if ((MI.getOpcode() == Mips::ADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO; } else if ((MI.getOpcode() == Mips::DADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO_64) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO_64; } if (!DstReg) return false; // Replace uses with ZeroReg. for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), E = MRI->use_end(); U != E; ++U) { MachineOperand &MO = U.getOperand(); MachineInstr *MI = MO.getParent(); // Do not replace if it is a phi's operand or is tied to def operand. if (MI->isPHI() || MI->isRegTiedToDefOperand(U.getOperandNo()) || MI->isPseudo()) continue; MO.setReg(ZeroReg); } return true; } void MipsDAGToDAGISel::ProcessFunctionAfterISel(MachineFunction &MF) { InitGlobalBaseReg(MF); MachineRegisterInfo *MRI = &MF.getRegInfo(); for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE; ++MFI) for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) ReplaceUsesWithZeroReg(MRI, *I); } bool MipsDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { bool Ret = SelectionDAGISel::runOnMachineFunction(MF); ProcessFunctionAfterISel(MF); return Ret; } /// getGlobalBaseReg - Output the instructions required to put the /// GOT address into a register. SDNode *MipsDAGToDAGISel::getGlobalBaseReg() { unsigned GlobalBaseReg = MF->getInfo()->getGlobalBaseReg(); return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); } /// ComplexPattern used on MipsInstrInfo /// Used on Mips Load/Store instructions bool MipsDAGToDAGISel:: SelectAddr(SDNode *Parent, SDValue Addr, SDValue &Base, SDValue &Offset) { EVT ValTy = Addr.getValueType(); // if Address is FI, get the TargetFrameIndex. if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); Offset = CurDAG->getTargetConstant(0, ValTy); return true; } // on PIC code Load GA if (Addr.getOpcode() == MipsISD::Wrapper) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1); return true; } if (TM.getRelocationModel() != Reloc::PIC_) { if ((Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress)) return false; } // Addresses of the form FI+const or FI|const if (CurDAG->isBaseWithConstantOffset(Addr)) { ConstantSDNode *CN = dyn_cast(Addr.getOperand(1)); if (isInt<16>(CN->getSExtValue())) { // If the first operand is a FI, get the TargetFI Node if (FrameIndexSDNode *FIN = dyn_cast (Addr.getOperand(0))) Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); else Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy); return true; } } // Operand is a result from an ADD. if (Addr.getOpcode() == ISD::ADD) { // When loading from constant pools, load the lower address part in // the instruction itself. Example, instead of: // lui $2, %hi($CPI1_0) // addiu $2, $2, %lo($CPI1_0) // lwc1 $f0, 0($2) // Generate: // lui $2, %hi($CPI1_0) // lwc1 $f0, %lo($CPI1_0)($2) if (Addr.getOperand(1).getOpcode() == MipsISD::Lo) { SDValue LoVal = Addr.getOperand(1), Opnd0 = LoVal.getOperand(0); if (isa(Opnd0) || isa(Opnd0) || isa(Opnd0)) { Base = Addr.getOperand(0); Offset = Opnd0; return true; } } // If an indexed floating point load/store can be emitted, return false. const LSBaseSDNode *LS = dyn_cast(Parent); if (LS && (LS->getMemoryVT() == MVT::f32 || LS->getMemoryVT() == MVT::f64) && Subtarget.hasMips32r2Or64()) return false; } Base = Addr; Offset = CurDAG->getTargetConstant(0, ValTy); return true; } /// Select multiply instructions. std::pair MipsDAGToDAGISel::SelectMULT(SDNode *N, unsigned Opc, DebugLoc dl, EVT Ty, bool HasLo, bool HasHi) { SDNode *Lo = 0, *Hi = 0; SDNode *Mul = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N->getOperand(0), N->getOperand(1)); SDValue InFlag = SDValue(Mul, 0); if (HasLo) { Lo = CurDAG->getMachineNode(Ty == MVT::i32 ? Mips::MFLO : Mips::MFLO64, dl, Ty, MVT::Glue, InFlag); InFlag = SDValue(Lo, 1); } if (HasHi) Hi = CurDAG->getMachineNode(Ty == MVT::i32 ? Mips::MFHI : Mips::MFHI64, dl, Ty, InFlag); return std::make_pair(Lo, Hi); } /// Select instructions not customized! Used for /// expanded, promoted and normal instructions SDNode* MipsDAGToDAGISel::Select(SDNode *Node) { unsigned Opcode = Node->getOpcode(); DebugLoc dl = Node->getDebugLoc(); // Dump information about the Node being selected DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n"); // If we have a custom node, we already have selected! if (Node->isMachineOpcode()) { DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); return NULL; } /// // Instruction Selection not handled by the auto-generated // tablegen selection should be handled here. /// EVT NodeTy = Node->getValueType(0); unsigned MultOpc; switch(Opcode) { default: break; case ISD::SUBE: case ISD::ADDE: { SDValue InFlag = Node->getOperand(2), CmpLHS; unsigned Opc = InFlag.getOpcode(); (void)Opc; assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC || Opc == ISD::SUBE)) && "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"); unsigned MOp; if (Opcode == ISD::ADDE) { CmpLHS = InFlag.getValue(0); MOp = Mips::ADDu; } else { CmpLHS = InFlag.getOperand(0); MOp = Mips::SUBu; } SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) }; SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); EVT VT = LHS.getValueType(); SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, dl, VT, Ops, 2); SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, dl, VT, SDValue(Carry,0), RHS); return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry,0)); } /// Mul with two results case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: { if (NodeTy == MVT::i32) MultOpc = (Opcode == ISD::UMUL_LOHI ? Mips::MULTu : Mips::MULT); else MultOpc = (Opcode == ISD::UMUL_LOHI ? Mips::DMULTu : Mips::DMULT); std::pair LoHi = SelectMULT(Node, MultOpc, dl, NodeTy, true, true); if (!SDValue(Node, 0).use_empty()) ReplaceUses(SDValue(Node, 0), SDValue(LoHi.first, 0)); if (!SDValue(Node, 1).use_empty()) ReplaceUses(SDValue(Node, 1), SDValue(LoHi.second, 0)); return NULL; } /// Special Muls case ISD::MUL: { // Mips32 has a 32-bit three operand mul instruction. if (Subtarget.hasMips32() && NodeTy == MVT::i32) break; return SelectMULT(Node, NodeTy == MVT::i32 ? Mips::MULT : Mips::DMULT, dl, NodeTy, true, false).first; } case ISD::MULHS: case ISD::MULHU: { if (NodeTy == MVT::i32) MultOpc = (Opcode == ISD::MULHU ? Mips::MULTu : Mips::MULT); else MultOpc = (Opcode == ISD::MULHU ? Mips::DMULTu : Mips::DMULT); return SelectMULT(Node, MultOpc, dl, NodeTy, false, true).second; } // Get target GOT address. case ISD::GLOBAL_OFFSET_TABLE: return getGlobalBaseReg(); case ISD::ConstantFP: { ConstantFPSDNode *CN = dyn_cast(Node); if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { if (Subtarget.hasMips64()) { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, Mips::ZERO_64, MVT::i64); return CurDAG->getMachineNode(Mips::DMTC1, dl, MVT::f64, Zero); } SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, Mips::ZERO, MVT::i32); return CurDAG->getMachineNode(Mips::BuildPairF64, dl, MVT::f64, Zero, Zero); } break; } case ISD::Constant: { const ConstantSDNode *CN = dyn_cast(Node); unsigned Size = CN->getValueSizeInBits(0); if (Size == 32) break; MipsAnalyzeImmediate AnalyzeImm; int64_t Imm = CN->getSExtValue(); const MipsAnalyzeImmediate::InstSeq &Seq = AnalyzeImm.Analyze(Imm, Size, false); MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); DebugLoc DL = CN->getDebugLoc(); SDNode *RegOpnd; SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), MVT::i64); // The first instruction can be a LUi which is different from other // instructions (ADDiu, ORI and SLL) in that it does not have a register // operand. if (Inst->Opc == Mips::LUi64) RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); else RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, CurDAG->getRegister(Mips::ZERO_64, MVT::i64), ImmOpnd); // The remaining instructions in the sequence are handled here. for (++Inst; Inst != Seq.end(); ++Inst) { ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), MVT::i64); RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, SDValue(RegOpnd, 0), ImmOpnd); } return RegOpnd; } case MipsISD::ThreadPointer: { EVT PtrVT = TLI.getPointerTy(); unsigned RdhwrOpc, SrcReg, DestReg; if (PtrVT == MVT::i32) { RdhwrOpc = Mips::RDHWR; SrcReg = Mips::HWR29; DestReg = Mips::V1; } else { RdhwrOpc = Mips::RDHWR64; SrcReg = Mips::HWR29_64; DestReg = Mips::V1_64; } SDNode *Rdhwr = CurDAG->getMachineNode(RdhwrOpc, Node->getDebugLoc(), Node->getValueType(0), CurDAG->getRegister(SrcReg, PtrVT)); SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, DestReg, SDValue(Rdhwr, 0)); SDValue ResNode = CurDAG->getCopyFromReg(Chain, dl, DestReg, PtrVT); ReplaceUses(SDValue(Node, 0), ResNode); return ResNode.getNode(); } } // Select the default instruction SDNode *ResNode = SelectCode(Node); DEBUG(errs() << "=> "); if (ResNode == NULL || ResNode == Node) DEBUG(Node->dump(CurDAG)); else DEBUG(ResNode->dump(CurDAG)); DEBUG(errs() << "\n"); return ResNode; } bool MipsDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); OutOps.push_back(Op); return false; } /// createMipsISelDag - This pass converts a legalized DAG into a /// MIPS-specific DAG, ready for instruction scheduling. FunctionPass *llvm::createMipsISelDag(MipsTargetMachine &TM) { return new MipsDAGToDAGISel(TM); }