//===- ProfileInfoLoad.cpp - Load profile information from disk -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ProfileInfoLoader class is used to load and represent profiling // information read in from the dump file. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ProfileInfoLoader.h" #include "llvm/Analysis/ProfileInfoTypes.h" #include "llvm/Module.h" #include "llvm/InstrTypes.h" #include <cstdio> #include <iostream> #include <map> using namespace llvm; // ByteSwap - Byteswap 'Var' if 'Really' is true. // static inline unsigned ByteSwap(unsigned Var, bool Really) { if (!Really) return Var; return ((Var & (255<< 0)) << 24) | ((Var & (255<< 8)) << 8) | ((Var & (255<<16)) >> 8) | ((Var & (255<<24)) >> 24); } static void ReadProfilingBlock(const char *ToolName, FILE *F, bool ShouldByteSwap, std::vector<unsigned> &Data) { // Read the number of entries... unsigned NumEntries; if (fread(&NumEntries, sizeof(unsigned), 1, F) != 1) { std::cerr << ToolName << ": data packet truncated!\n"; perror(0); exit(1); } NumEntries = ByteSwap(NumEntries, ShouldByteSwap); // Read the counts... std::vector<unsigned> TempSpace(NumEntries); // Read in the block of data... if (fread(&TempSpace[0], sizeof(unsigned)*NumEntries, 1, F) != 1) { std::cerr << ToolName << ": data packet truncated!\n"; perror(0); exit(1); } // Make sure we have enough space... if (Data.size() < NumEntries) Data.resize(NumEntries); // Accumulate the data we just read into the data. if (!ShouldByteSwap) { for (unsigned i = 0; i != NumEntries; ++i) Data[i] += TempSpace[i]; } else { for (unsigned i = 0; i != NumEntries; ++i) Data[i] += ByteSwap(TempSpace[i], true); } } // ProfileInfoLoader ctor - Read the specified profiling data file, exiting the // program if the file is invalid or broken. // ProfileInfoLoader::ProfileInfoLoader(const char *ToolName, const std::string &Filename, Module &TheModule) : M(TheModule) { FILE *F = fopen(Filename.c_str(), "r"); if (F == 0) { std::cerr << ToolName << ": Error opening '" << Filename << "': "; perror(0); exit(1); } // Keep reading packets until we run out of them. unsigned PacketType; while (fread(&PacketType, sizeof(unsigned), 1, F) == 1) { // If the low eight bits of the packet are zero, we must be dealing with an // endianness mismatch. Byteswap all words read from the profiling // information. bool ShouldByteSwap = (char)PacketType == 0; PacketType = ByteSwap(PacketType, ShouldByteSwap); switch (PacketType) { case ArgumentInfo: { unsigned ArgLength; if (fread(&ArgLength, sizeof(unsigned), 1, F) != 1) { std::cerr << ToolName << ": arguments packet truncated!\n"; perror(0); exit(1); } ArgLength = ByteSwap(ArgLength, ShouldByteSwap); // Read in the arguments... std::vector<char> Chars(ArgLength+4); if (ArgLength) if (fread(&Chars[0], (ArgLength+3) & ~3, 1, F) != 1) { std::cerr << ToolName << ": arguments packet truncated!\n"; perror(0); exit(1); } CommandLines.push_back(std::string(&Chars[0], &Chars[ArgLength])); break; } case FunctionInfo: ReadProfilingBlock(ToolName, F, ShouldByteSwap, FunctionCounts); break; case BlockInfo: ReadProfilingBlock(ToolName, F, ShouldByteSwap, BlockCounts); break; case EdgeInfo: ReadProfilingBlock(ToolName, F, ShouldByteSwap, EdgeCounts); break; case BBTraceInfo: ReadProfilingBlock(ToolName, F, ShouldByteSwap, BBTrace); break; default: std::cerr << ToolName << ": Unknown packet type #" << PacketType << "!\n"; exit(1); } } fclose(F); } // getFunctionCounts - This method is used by consumers of function counting // information. If we do not directly have function count information, we // compute it from other, more refined, types of profile information. // void ProfileInfoLoader::getFunctionCounts(std::vector<std::pair<Function*, unsigned> > &Counts) { if (FunctionCounts.empty()) { if (hasAccurateBlockCounts()) { // Synthesize function frequency information from the number of times // their entry blocks were executed. std::vector<std::pair<BasicBlock*, unsigned> > BlockCounts; getBlockCounts(BlockCounts); for (unsigned i = 0, e = BlockCounts.size(); i != e; ++i) if (&BlockCounts[i].first->getParent()->front() == BlockCounts[i].first) Counts.push_back(std::make_pair(BlockCounts[i].first->getParent(), BlockCounts[i].second)); } else { std::cerr << "Function counts are not available!\n"; } return; } unsigned Counter = 0; for (Module::iterator I = M.begin(), E = M.end(); I != E && Counter != FunctionCounts.size(); ++I) if (!I->isExternal()) Counts.push_back(std::make_pair(I, FunctionCounts[Counter++])); } // getBlockCounts - This method is used by consumers of block counting // information. If we do not directly have block count information, we // compute it from other, more refined, types of profile information. // void ProfileInfoLoader::getBlockCounts(std::vector<std::pair<BasicBlock*, unsigned> > &Counts) { if (BlockCounts.empty()) { if (hasAccurateEdgeCounts()) { // Synthesize block count information from edge frequency information. // The block execution frequency is equal to the sum of the execution // frequency of all outgoing edges from a block. // // If a block has no successors, this will not be correct, so we have to // special case it. :( std::vector<std::pair<Edge, unsigned> > EdgeCounts; getEdgeCounts(EdgeCounts); std::map<BasicBlock*, unsigned> InEdgeFreqs; BasicBlock *LastBlock = 0; TerminatorInst *TI = 0; for (unsigned i = 0, e = EdgeCounts.size(); i != e; ++i) { if (EdgeCounts[i].first.first != LastBlock) { LastBlock = EdgeCounts[i].first.first; TI = LastBlock->getTerminator(); Counts.push_back(std::make_pair(LastBlock, 0)); } Counts.back().second += EdgeCounts[i].second; unsigned SuccNum = EdgeCounts[i].first.second; if (SuccNum >= TI->getNumSuccessors()) { static bool Warned = false; if (!Warned) { std::cerr << "WARNING: profile info doesn't seem to match" << " the program!\n"; Warned = true; } } else { // If this successor has no successors of its own, we will never // compute an execution count for that block. Remember the incoming // edge frequencies to add later. BasicBlock *Succ = TI->getSuccessor(SuccNum); if (Succ->getTerminator()->getNumSuccessors() == 0) InEdgeFreqs[Succ] += EdgeCounts[i].second; } } // Now we have to accumulate information for those blocks without // successors into our table. for (std::map<BasicBlock*, unsigned>::iterator I = InEdgeFreqs.begin(), E = InEdgeFreqs.end(); I != E; ++I) { unsigned i = 0; for (; i != Counts.size() && Counts[i].first != I->first; ++i) /*empty*/; if (i == Counts.size()) Counts.push_back(std::make_pair(I->first, 0)); Counts[i].second += I->second; } } else { std::cerr << "Block counts are not available!\n"; } return; } unsigned Counter = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { Counts.push_back(std::make_pair(BB, BlockCounts[Counter++])); if (Counter == BlockCounts.size()) return; } } // getEdgeCounts - This method is used by consumers of edge counting // information. If we do not directly have edge count information, we compute // it from other, more refined, types of profile information. // void ProfileInfoLoader::getEdgeCounts(std::vector<std::pair<Edge, unsigned> > &Counts) { if (EdgeCounts.empty()) { std::cerr << "Edge counts not available, and no synthesis " << "is implemented yet!\n"; return; } unsigned Counter = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (unsigned i = 0, e = BB->getTerminator()->getNumSuccessors(); i != e; ++i) { Counts.push_back(std::make_pair(Edge(BB, i), EdgeCounts[Counter++])); if (Counter == EdgeCounts.size()) return; } } // getBBTrace - This method is used by consumers of basic-block trace // information. // void ProfileInfoLoader::getBBTrace(std::vector<BasicBlock *> &Trace) { if (BBTrace.empty ()) { std::cerr << "Basic block trace is not available!\n"; return; } std::cerr << "Basic block trace loading is not implemented yet!\n"; }