//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===// // // This file contains a printer that converts from our internal representation // of LLVM code to a nice human readable form that is suitable for debuggging. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Target/TargetMachine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "Support/Statistic.h" namespace { struct Printer : public FunctionPass { TargetMachine &TM; std::ostream &O; Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {} bool runOnFunction(Function &F); }; } /// createX86CodePrinterPass - Print out the specified machine code function to /// the specified stream. This function should work regardless of whether or /// not the function is in SSA form or not. /// Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) { return new Printer(TM, O); } /// runOnFunction - This uses the X86InstructionInfo::print method /// to print assembly for each instruction. bool Printer::runOnFunction (Function & F) { static unsigned bbnumber = 0; MachineFunction & MF = MachineFunction::get (&F); const MachineInstrInfo & MII = TM.getInstrInfo (); // Print out labels for the function. O << "\t.globl\t" << F.getName () << "\n"; O << "\t.type\t" << F.getName () << ", @function\n"; O << F.getName () << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end (); bb_i != bb_e; ++bb_i) { // Print a label for the basic block. O << ".BB" << bbnumber++ << ":\n"; for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e = bb_i->end (); i_i != i_e; ++i_i) { // Print the assembly for the instruction. O << "\t"; MII.print(*i_i, O, TM); } } // We didn't modify anything. return false; } static bool isReg(const MachineOperand &MO) { return MO.getType() == MachineOperand::MO_VirtualRegister || MO.getType() == MachineOperand::MO_MachineRegister; } static bool isImmediate(const MachineOperand &MO) { return MO.getType() == MachineOperand::MO_SignExtendedImmed || MO.getType() == MachineOperand::MO_UnextendedImmed; } static bool isPCRelativeDisp(const MachineOperand &MO) { return MO.getType() == MachineOperand::MO_PCRelativeDisp; } static bool isScale(const MachineOperand &MO) { return isImmediate(MO) && (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || MO.getImmedValue() == 4 || MO.getImmedValue() == 8); } static bool isMem(const MachineInstr *MI, unsigned Op) { return Op+4 <= MI->getNumOperands() && isReg(MI->getOperand(Op )) && isScale(MI->getOperand(Op+1)) && isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3)); } static void printOp(std::ostream &O, const MachineOperand &MO, const MRegisterInfo &RI) { switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } case MachineOperand::MO_MachineRegister: if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) O << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_PCRelativeDisp: O << "<" << MO.getVRegValue()->getName() << ">"; return; default: O << ""; return; } } static const std::string sizePtr (const MachineInstrDescriptor &Desc) { switch (Desc.TSFlags & X86II::ArgMask) { case X86II::Arg8: return "BYTE PTR"; case X86II::Arg16: return "WORD PTR"; case X86II::Arg32: return "DWORD PTR"; case X86II::Arg64: return "QWORD PTR"; case X86II::Arg80: return "XWORD PTR"; case X86II::Arg128: return "128BIT PTR"; // dunno what the real one is default: return " PTR"; // crack being smoked } } static void printMemReference(std::ostream &O, const MachineInstr *MI, unsigned Op, const MRegisterInfo &RI) { assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &BaseReg = MI->getOperand(Op); const MachineOperand &Scale = MI->getOperand(Op+1); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &Disp = MI->getOperand(Op+3); O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(O, BaseReg, RI); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (Scale.getImmedValue() != 1) O << Scale.getImmedValue() << "*"; printOp(O, IndexReg, RI); NeedPlus = true; } if (Disp.getImmedValue()) { if (NeedPlus) O << " + "; printOp(O, Disp, RI); } O << "]"; } // print - Print out an x86 instruction in intel syntax void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O, const TargetMachine &TM) const { unsigned Opcode = MI->getOpcode(); const MachineInstrDescriptor &Desc = get(Opcode); switch (Desc.TSFlags & X86II::FormMask) { case X86II::RawFrm: // The accepted forms of Raw instructions are: // 1. nop - No operand required // 2. jmp foo - PC relative displacement operand // assert(MI->getNumOperands() == 0 || (MI->getNumOperands() == 1 && isPCRelativeDisp(MI->getOperand(0))) && "Illegal raw instruction!"); O << getName(MI->getOpCode()) << " "; if (MI->getNumOperands() == 1) { printOp(O, MI->getOperand(0), RI); } O << "\n"; return; case X86II::AddRegFrm: { // There are currently two forms of acceptable AddRegFrm instructions. // Either the instruction JUST takes a single register (like inc, dec, etc), // or it takes a register and an immediate of the same size as the register // (move immediate f.e.). Note that this immediate value might be stored as // an LLVM value, to represent, for example, loading the address of a global // into a register. // assert(isReg(MI->getOperand(0)) && (MI->getNumOperands() == 1 || (MI->getNumOperands() == 2 && (MI->getOperand(1).getVRegValueOrNull() || isImmediate(MI->getOperand(1))))) && "Illegal form for AddRegFrm instruction!"); unsigned Reg = MI->getOperand(0).getReg(); O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); if (MI->getNumOperands() == 2) { O << ", "; printOp(O, MI->getOperand(1), RI); } O << "\n"; return; } case X86II::MRMDestReg: { // There are two acceptable forms of MRMDestReg instructions, those with 3 // and 2 operands: // // 3 Operands: in this form, the first two registers (the destination, and // the first operand) should be the same, post register allocation. The 3rd // operand is an additional input. This should be for things like add // instructions. // // 2 Operands: this is for things like mov that do not read a second input // assert(isReg(MI->getOperand(0)) && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) && isReg(MI->getOperand(MI->getNumOperands()-1)) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 3 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); O << "\n"; return; } case X86II::MRMDestMem: { // These instructions are the same as MRMDestReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!"); O << getName(MI->getOpCode()) << " " << sizePtr (Desc) << " "; printMemReference(O, MI, 0, RI); O << ", "; printOp(O, MI->getOperand(4), RI); O << "\n"; return; } case X86II::MRMSrcReg: { // There is a two forms that are acceptable for MRMSrcReg instructions, // those with 3 and 2 operands: // // 3 Operands: in this form, the last register (the second input) is the // ModR/M input. The first two operands should be the same, post register // allocation. This is for things like: add r32, r/m32 // // 2 Operands: this is for things like mov that do not read a second input // assert(isReg(MI->getOperand(0)) && isReg(MI->getOperand(1)) && (MI->getNumOperands() == 2 || (MI->getNumOperands() == 3 && isReg(MI->getOperand(2)))) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 3 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); O << "\n"; return; } case X86II::MRMSrcMem: { // These instructions are the same as MRMSrcReg, but instead of having a // register reference for the mod/rm field, it's a memory reference. // assert(isReg(MI->getOperand(0)) && (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || (MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) && isMem(MI, 2)) && "Bad format for MRMDestReg!"); if (MI->getNumOperands() == 2+4 && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); O << ", " << sizePtr (Desc) << " "; printMemReference(O, MI, MI->getNumOperands()-4, RI); O << "\n"; return; } case X86II::MRMS0r: case X86II::MRMS1r: case X86II::MRMS2r: case X86II::MRMS3r: case X86II::MRMS4r: case X86II::MRMS5r: case X86II::MRMS6r: case X86II::MRMS7r: { // In this form, the following are valid formats: // 1. sete r // 2. cmp reg, immediate // 2. shl rdest, rinput // 3. sbb rdest, rinput, immediate [rdest = rinput] // assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && isReg(MI->getOperand(0)) && "Bad MRMSxR format!"); assert((MI->getNumOperands() != 2 || isReg(MI->getOperand(1)) || isImmediate(MI->getOperand(1))) && "Bad MRMSxR format!"); assert((MI->getNumOperands() < 3 || (isReg(MI->getOperand(1)) && isImmediate(MI->getOperand(2)))) && "Bad MRMSxR format!"); if (MI->getNumOperands() > 1 && isReg(MI->getOperand(1)) && MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) O << "**"; O << getName(MI->getOpCode()) << " "; printOp(O, MI->getOperand(0), RI); if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) { O << ", "; printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); } O << "\n"; return; } default: O << "\t\t\t-"; MI->print(O, TM); break; } }