//===- ARMInstrThumb2.td - Thumb2 support for ARM -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb2 instruction set. // //===----------------------------------------------------------------------===// // Shifted operands. No register controlled shifts for Thumb2. // Note: We do not support rrx shifted operands yet. def t2_so_reg : Operand, // reg imm ComplexPattern { let PrintMethod = "printT2SOOperand"; let MIOperandInfo = (ops GPR, i32imm); } // t2_so_imm_XFORM - Return a t2_so_imm value packed into the format // described for t2_so_imm def below. def t2_so_imm_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(N->getZExtValue()), MVT::i32); }]>; // t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value def t2_so_imm_not_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())), MVT::i32); }]>; // t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value def t2_so_imm_neg_XFORM : SDNodeXFormgetTargetConstant( ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())), MVT::i32); }]>; // t2_so_imm - Match a 32-bit immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit // immediate splatted into multiple bytes of the word. t2_so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into t2_so_imm instructions: the 8-bit immediate is the least significant bits // [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11]. def t2_so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1; }], t2_so_imm_XFORM> { let PrintMethod = "printT2SOImmOperand"; } // t2_so_imm_not - Match an immediate that is a complement // of a t2_so_imm. def t2_so_imm_not : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1; }], t2_so_imm_not_XFORM> { let PrintMethod = "printT2SOImmOperand"; } // t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm. def t2_so_imm_neg : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1; }], t2_so_imm_neg_XFORM> { let PrintMethod = "printT2SOImmOperand"; } /// imm1_31 predicate - True if the 32-bit immediate is in the range [1,31]. def imm1_31 : PatLeaf<(i32 imm), [{ return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 32; }]>; /// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095]. def imm0_4095 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 4096; }]>; def imm0_4095_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 4096; }], imm_neg_XFORM>; /// imm0_65535 predicate - True if the 32-bit immediate is in the range /// [0.65535]. def imm0_65535 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 65536; }]>; /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield /// e.g., 0xf000ffff def bf_inv_mask_imm : Operand, PatLeaf<(imm), [{ uint32_t v = (uint32_t)N->getZExtValue(); if (v == 0xffffffff) return 0; // naive checker. should do better, but simple is best for now since it's // more likely to be correct. while (v & 1) v >>= 1; // shift off the leading 1's if (v) { while (!(v & 1)) v >>=1; // shift off the mask while (v & 1) v >>= 1; // shift off the trailing 1's } // if this is a mask for clearing a bitfield, what's left should be zero. return (v == 0); }] > { let PrintMethod = "printBitfieldInvMaskImmOperand"; } /// Split a 32-bit immediate into two 16 bit parts. def t2_lo16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() & 0xffff, MVT::i32); }]>; def t2_hi16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32); }]>; def t2_lo16AllZero : PatLeaf<(i32 imm), [{ // Returns true if all low 16-bits are 0. return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; }], t2_hi16>; // Define Thumb2 specific addressing modes. // t2addrmode_imm12 := reg + imm12 def t2addrmode_imm12 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm12Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_imm8 := reg - imm8 def t2addrmode_imm8 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } def t2am_imm8_offset : Operand { let PrintMethod = "printT2AddrModeImm8OffsetOperand"; } // t2addrmode_imm8s4 := reg + (imm8 << 2) def t2addrmode_imm8s4 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_so_reg := reg + reg << imm2 def t2addrmode_so_reg : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeSoRegOperand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } //===----------------------------------------------------------------------===// // Multiclass helpers... // /// T2I_un_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a /// unary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_un_irs{ // shifted imm def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), opc, " $dst, $src", [(set GPR:$dst, (opnode t2_so_imm:$src))]> { let isAsCheapAsAMove = Cheap; let isReMaterializable = ReMat; } // register def r : T2I<(outs GPR:$dst), (ins GPR:$src), opc, " $dst, $src", [(set GPR:$dst, (opnode GPR:$src))]>; // shifted register def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src), opc, " $dst, $src", [(set GPR:$dst, (opnode t2_so_reg:$src))]>; } /// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a // binary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_bin_irs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are /// reversed. It doesn't define the 'rr' form since it's handled by its /// T2I_bin_irs counterpart. multiclass T2I_rbin_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), opc, " $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), opc, " $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } /// T2I_bin_s_irs - Similar to T2I_bin_irs except it sets the 's' bit so the /// instruction modifies the CPSR register. let Defs = [CPSR] in { multiclass T2I_bin_s_irs { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, "s"), " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // register def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), !strconcat(opc, "s"), " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, "s"), " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } } /// T2I_bin_ii12rs - Defines a set of (op reg, {so_imm|imm0_4095|r|so_reg}) /// patterns for a binary operation that produces a value. multiclass T2I_bin_ii12rs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // 12-bit imm def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), !strconcat(opc, "w"), " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_adde_sube_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a /// binary operation that produces a value and use and define the carry bit. /// It's not predicable. let Uses = [CPSR] in { multiclass T2I_adde_sube_irs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // Carry setting variants // shifted imm def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } // register def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; let isCommutable = Commutable; } // shifted register def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } } } /// T2I_rsc_is - Same as T2I_adde_sube_irs except the order of operands are /// reversed. It doesn't define the 'rr' form since it's handled by its /// T2I_adde_sube_irs counterpart. let Defs = [CPSR], Uses = [CPSR] in { multiclass T2I_rsc_is { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), opc, " $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), opc, " $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // shifted imm def Sri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), !strconcat(opc, "s $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } // shifted register def Srs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), !strconcat(opc, "s $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } } } /// T2I_rbin_s_is - Same as T2I_bin_s_irs except the order of operands are /// reversed. It doesn't define the 'rr' form since it's handled by its /// T2I_bin_s_irs counterpart. let Defs = [CPSR] in { multiclass T2I_rbin_s_is { // shifted imm def ri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s), !strconcat(opc, "${s} $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s), !strconcat(opc, "${s} $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } } /// T2I_sh_ir - Defines a set of (op reg, {so_imm|r}) patterns for a shift / // rotate operation that produces a value. multiclass T2I_sh_ir { // 5-bit imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm1_31:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>; } /// T21_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test /// patterns. Similar to T2I_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. let Uses = [CPSR] in { multiclass T2I_cmp_is { // shifted imm def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs), opc, " $lhs, $rhs", [(opnode GPR:$lhs, t2_so_imm:$rhs)]>; // register def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs), opc, " $lhs, $rhs", [(opnode GPR:$lhs, GPR:$rhs)]>; // shifted register def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs), opc, " $lhs, $rhs", [(opnode GPR:$lhs, t2_so_reg:$rhs)]>; } } /// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns. multiclass T2I_ld { def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr), opc, " $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm12:$addr))]>; def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr), opc, " $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm8:$addr))]>; def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr), opc, " $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_so_reg:$addr))]>; def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr), opc, " $dst, $addr", [(set GPR:$dst, (opnode (ARMWrapper tconstpool:$addr)))]>; } /// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns. multiclass T2I_st { def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr), opc, " $src, $addr", [(opnode GPR:$src, t2addrmode_imm12:$addr)]>; def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr), opc, " $src, $addr", [(opnode GPR:$src, t2addrmode_imm8:$addr)]>; def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr), opc, " $src, $addr", [(opnode GPR:$src, t2addrmode_so_reg:$addr)]>; } /// T2I_picld - Defines the PIC load pattern. class T2I_picld : T2I<(outs GPR:$dst), (ins addrmodepc:$addr), !strconcat("${addr:label}:\n\t", opc), " $dst, $addr", [(set GPR:$dst, (opnode addrmodepc:$addr))]>; /// T2I_picst - Defines the PIC store pattern. class T2I_picst : T2I<(outs), (ins GPR:$src, addrmodepc:$addr), !strconcat("${addr:label}:\n\t", opc), " $src, $addr", [(opnode GPR:$src, addrmodepc:$addr)]>; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // let isNotDuplicable = 1 in def t2PICADD : T2XI<(outs tGPR:$dst), (ins tGPR:$lhs, pclabel:$cp), "$cp:\n\tadd $dst, pc", [(set tGPR:$dst, (ARMpic_add tGPR:$lhs, imm:$cp))]>; // LEApcrel - Load a pc-relative address into a register without offending the // assembler. def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p), !strconcat(!strconcat(".set PCRELV${:uid}, ($label-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #PCRELV${:uid}")), []>; def t2LEApcrelJT : T2XI<(outs GPR:$dst), (ins i32imm:$label, i32imm:$id, pred:$p), !strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #PCRELV${:uid}")), []>; // ADD rd, sp, #so_imm def t2ADDrSPi : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), "add $dst, $sp, $imm", []>; // ADD rd, sp, #imm12 def t2ADDrSPi12 : T2XI<(outs GPR:$dst), (ins GPR:$sp, i32imm:$imm), "addw $dst, $sp, $imm", []>; def t2ADDrSPs : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), "addw $dst, $sp, $rhs", []>; //===----------------------------------------------------------------------===// // Load / store Instructions. // // Load let canFoldAsLoad = 1 in defm t2LDR : T2I_ld<"ldr", UnOpFrag<(load node:$Src)>>; // Loads with zero extension defm t2LDRH : T2I_ld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>; defm t2LDRB : T2I_ld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>; // Loads with sign extension defm t2LDRSH : T2I_ld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>; defm t2LDRSB : T2I_ld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>; let mayLoad = 1 in { // Load doubleword def t2LDRDi8 : T2Ii8s4<(outs GPR:$dst), (ins t2addrmode_imm8s4:$addr), "ldrd", " $dst, $addr", []>; def t2LDRDpci : T2Ii8s4<(outs GPR:$dst), (ins i32imm:$addr), "ldrd", " $dst, $addr", []>; } // zextload i1 -> zextload i8 def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(zextloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; // extload -> zextload // FIXME: Reduce the number of patterns by legalizing extload to zextload // earlier? def : T2Pat<(extloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi8 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi8 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm12:$addr), (t2LDRHi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm8:$addr), (t2LDRHi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi16 t2addrmode_so_reg:$addr), (t2LDRHs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)), (t2LDRHpci tconstpool:$addr)>; // Indexed loads def t2LDR_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, "ldr", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDR_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, "ldr", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRB_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, "ldrb", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRB_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, "ldrb", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRH_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, "ldrh", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRH_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, "ldrh", " $dst, [$base], $offset", "$base = $base_wb", []>; // Store defm t2STR : T2I_st<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>; defm t2STRB : T2I_st<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; defm t2STRH : T2I_st<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; // Store doubleword let mayLoad = 1 in def t2STRDi8 : T2Ii8s4<(outs), (ins GPR:$src, t2addrmode_imm8s4:$addr), "strd", " $src, $addr", []>; // Address computation and loads and stores in PIC mode. let isNotDuplicable = 1, AddedComplexity = 10 in { let canFoldAsLoad = 1 in def t2PICLDR : T2I_picld<"ldr", UnOpFrag<(load node:$Src)>>; def t2PICLDRH : T2I_picld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>; def t2PICLDRB : T2I_picld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>; def t2PICLDRSH : T2I_picld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>; def t2PICLDRSB : T2I_picld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>; def t2PICSTR : T2I_picst<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>; def t2PICSTRH : T2I_picst<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; def t2PICSTRB : T2I_picst<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; } // isNotDuplicable = 1, AddedComplexity = 10 //===----------------------------------------------------------------------===// // Move Instructions. // let neverHasSideEffects = 1 in def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src), "mov", " $dst, $src", []>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), "mov", " $dst, $src", [(set GPR:$dst, t2_so_imm:$src)]>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src), "movw", " $dst, $src", [(set GPR:$dst, imm0_65535:$src)]>; // FIXME: Also available in ARM mode. let Constraints = "$src = $dst" in def t2MOVTi16 : T2sI<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm), "movt", " $dst, $imm", [(set GPR:$dst, (or (and GPR:$src, 0xffff), t2_lo16AllZero:$imm))]>; //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm t2ADD : T2I_bin_ii12rs<"add", BinOpFrag<(add node:$LHS, node:$RHS)>, 1>; defm t2SUB : T2I_bin_ii12rs<"sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants. defm t2ADDS : T2I_bin_s_irs <"add", BinOpFrag<(addc node:$LHS, node:$RHS)>, 1>; defm t2SUBS : T2I_bin_s_irs <"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm t2ADC : T2I_adde_sube_irs<"adc",BinOpFrag<(adde node:$LHS, node:$RHS)>,1>; defm t2SBC : T2I_adde_sube_irs<"sbc",BinOpFrag<(sube node:$LHS, node:$RHS)>>; // RSB, RSC defm t2RSB : T2I_rbin_is <"rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>; defm t2RSBS : T2I_rbin_s_is <"rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm t2RSC : T2I_rsc_is <"rsc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm), (t2SUBri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm), (t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>; //===----------------------------------------------------------------------===// // Shift and rotate Instructions. // defm t2LSL : T2I_sh_ir<"lsl", BinOpFrag<(shl node:$LHS, node:$RHS)>>; defm t2LSR : T2I_sh_ir<"lsr", BinOpFrag<(srl node:$LHS, node:$RHS)>>; defm t2ASR : T2I_sh_ir<"asr", BinOpFrag<(sra node:$LHS, node:$RHS)>>; defm t2ROR : T2I_sh_ir<"ror", BinOpFrag<(rotr node:$LHS, node:$RHS)>>; def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src), "mov", " $dst, $src, rrx", [(set GPR:$dst, (ARMrrx GPR:$src))]>; //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm t2AND : T2I_bin_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>; defm t2ORR : T2I_bin_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>; defm t2EOR : T2I_bin_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>; defm t2BIC : T2I_bin_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm), (t2BICri GPR:$src, t2_so_imm_not:$imm)>; defm t2ORN : T2I_bin_irs<"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>; def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm), (t2ORNri GPR:$src, t2_so_imm_not:$imm)>; // Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version let AddedComplexity = 1 in defm t2MVN : T2I_un_irs <"mvn", UnOpFrag<(not node:$Src)>, 1, 1>; def : T2Pat<(t2_so_imm_not:$src), (t2MVNi t2_so_imm_not:$src)>; // A8.6.17 BFC - Bitfield clear // FIXME: Also available in ARM mode. let Constraints = "$src = $dst" in def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm), "bfc", " $dst, $imm", [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>; // FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1) //===----------------------------------------------------------------------===// // Multiply Instructions. // let isCommutable = 1 in def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), "mul", " $dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]>; def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "mla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>; def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "mls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>; // FIXME: SMULL, etc. //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src), "clz", " $dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>; def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src), "rev", " $dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>; def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src), "rev16", " $dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, (i32 8)), 0xFF), (or (and (shl GPR:$src, (i32 8)), 0xFF00), (or (and (srl GPR:$src, (i32 8)), 0xFF0000), (and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>; ///// /// A8.6.137 REVSH ///// def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src), "revsh", " $dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFFFF), (i32 8)), (shl GPR:$src, (i32 8))), i16))]>; // FIXME: PKHxx etc. //===----------------------------------------------------------------------===// // Comparison Instructions... // defm t2CMP : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm t2CMPz : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>; defm t2CMN : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; defm t2CMNz : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>; def : T2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(ARMcmpZ GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; defm t2TST : T2I_cmp_is<"tst", BinOpFrag<(ARMcmpZ (and node:$LHS, node:$RHS), 0)>>; defm t2TEQ : T2I_cmp_is<"teq", BinOpFrag<(ARMcmpZ (xor node:$LHS, node:$RHS), 0)>>; // A8.6.27 CBNZ, CBZ - Compare and branch on (non)zero. // Short range conditional branch. Looks awesome for loops. Need to figure // out how to use this one. // FIXME: Conditional moves //===----------------------------------------------------------------------===// // Control-Flow Instructions // let isBranch = 1, isTerminator = 1, isBarrier = 1 in { let isPredicable = 1 in def t2B : T2XI<(outs), (ins brtarget:$target), "b $target", [(br bb:$target)]>; let isNotDuplicable = 1, isIndirectBranch = 1 in { def t2BR_JTr : T2JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id), "mov pc, $target \n$jt", [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>; def t2BR_JTm : T2JTI<(outs), (ins t2addrmode_so_reg:$target, jtblock_operand:$jt, i32imm:$id), "ldr pc, $target \n$jt", [(ARMbrjt (i32 (load t2addrmode_so_reg:$target)), tjumptable:$jt, imm:$id)]>; def t2BR_JTadd : T2JTI<(outs), (ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id), "add pc, $target, $idx \n$jt", [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, imm:$id)]>; } // isNotDuplicate, isIndirectBranch } // isBranch, isTerminator, isBarrier // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( let isBranch = 1, isTerminator = 1 in def t2Bcc : T2I<(outs), (ins brtarget:$target), "b", " $target", [/*(ARMbrcond bb:$target, imm:$cc)*/]>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // ConstantPool, GlobalAddress, and JumpTable def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2LEApcrel tglobaladdr :$dst)>; def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>; def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id), (t2LEApcrelJT tjumptable:$dst, imm:$id)>; // Large immediate handling. def : T2Pat<(i32 imm:$src), (t2MOVTi16 (t2MOVi16 (t2_lo16 imm:$src)), (t2_hi16 imm:$src))>;