//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class wrap target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes throw exceptions on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenIntrinsics.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Streams.h" #include #include using namespace llvm; static cl::opt AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N")); /// getValueType - Return the MCV::ValueType that the specified TableGen record /// corresponds to. MVT::ValueType llvm::getValueType(Record *Rec, const CodeGenTarget *CGT) { return (MVT::ValueType)Rec->getValueAsInt("Value"); } std::string llvm::getName(MVT::ValueType T) { switch (T) { case MVT::Other: return "UNKNOWN"; case MVT::i1: return "MVT::i1"; case MVT::i8: return "MVT::i8"; case MVT::i16: return "MVT::i16"; case MVT::i32: return "MVT::i32"; case MVT::i64: return "MVT::i64"; case MVT::i128: return "MVT::i128"; case MVT::f32: return "MVT::f32"; case MVT::f64: return "MVT::f64"; case MVT::f80: return "MVT::f80"; case MVT::f128: return "MVT::f128"; case MVT::Flag: return "MVT::Flag"; case MVT::isVoid:return "MVT::void"; case MVT::v8i8: return "MVT::v8i8"; case MVT::v4i16: return "MVT::v4i16"; case MVT::v2i32: return "MVT::v2i32"; case MVT::v1i64: return "MVT::v1i64"; case MVT::v16i8: return "MVT::v16i8"; case MVT::v8i16: return "MVT::v8i16"; case MVT::v4i32: return "MVT::v4i32"; case MVT::v2i64: return "MVT::v2i64"; case MVT::v2f32: return "MVT::v2f32"; case MVT::v4f32: return "MVT::v4f32"; case MVT::v2f64: return "MVT::v2f64"; case MVT::iPTR: return "TLI.getPointerTy()"; default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; } } std::string llvm::getEnumName(MVT::ValueType T) { switch (T) { case MVT::Other: return "MVT::Other"; case MVT::i1: return "MVT::i1"; case MVT::i8: return "MVT::i8"; case MVT::i16: return "MVT::i16"; case MVT::i32: return "MVT::i32"; case MVT::i64: return "MVT::i64"; case MVT::i128: return "MVT::i128"; case MVT::f32: return "MVT::f32"; case MVT::f64: return "MVT::f64"; case MVT::f80: return "MVT::f80"; case MVT::f128: return "MVT::f128"; case MVT::Flag: return "MVT::Flag"; case MVT::isVoid:return "MVT::isVoid"; case MVT::v8i8: return "MVT::v8i8"; case MVT::v4i16: return "MVT::v4i16"; case MVT::v2i32: return "MVT::v2i32"; case MVT::v1i64: return "MVT::v1i64"; case MVT::v16i8: return "MVT::v16i8"; case MVT::v8i16: return "MVT::v8i16"; case MVT::v4i32: return "MVT::v4i32"; case MVT::v2i64: return "MVT::v2i64"; case MVT::v2f32: return "MVT::v2f32"; case MVT::v4f32: return "MVT::v4f32"; case MVT::v2f64: return "MVT::v2f64"; case MVT::iPTR: return "TLI.getPointerTy()"; default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; } } std::ostream &llvm::operator<<(std::ostream &OS, MVT::ValueType T) { return OS << getName(T); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget() { std::vector Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) throw std::string("ERROR: No 'Target' subclasses defined!"); if (Targets.size() != 1) throw std::string("ERROR: Multiple subclasses of Target defined!"); TargetRec = Targets[0]; } const std::string &CodeGenTarget::getName() const { return TargetRec->getName(); } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; return LI[AsmWriterNum]; } void CodeGenTarget::ReadRegisters() const { std::vector Regs = Records.getAllDerivedDefinitions("Register"); if (Regs.empty()) throw std::string("No 'Register' subclasses defined!"); Registers.reserve(Regs.size()); Registers.assign(Regs.begin(), Regs.end()); } CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { DeclaredSpillSize = R->getValueAsInt("SpillSize"); DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); } const std::string &CodeGenRegister::getName() const { return TheDef->getName(); } void CodeGenTarget::ReadRegisterClasses() const { std::vector RegClasses = Records.getAllDerivedDefinitions("RegisterClass"); if (RegClasses.empty()) throw std::string("No 'RegisterClass' subclasses defined!"); RegisterClasses.reserve(RegClasses.size()); RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); } std::vector CodeGenTarget::getRegisterVTs(Record *R) const { std::vector Result; const std::vector &RCs = getRegisterClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) { const CodeGenRegisterClass &RC = RegisterClasses[i]; for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { if (R == RC.Elements[ei]) { const std::vector &InVTs = RC.getValueTypes(); for (unsigned i = 0, e = InVTs.size(); i != e; ++i) Result.push_back(InVTs[i]); } } } return Result; } CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { // Rename anonymous register classes. if (R->getName().size() > 9 && R->getName()[9] == '.') { static unsigned AnonCounter = 0; R->setName("AnonRegClass_"+utostr(AnonCounter++)); } std::vector TypeList = R->getValueAsListOfDefs("RegTypes"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) throw "RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"; VTs.push_back(getValueType(Type)); } assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); std::vector RegList = R->getValueAsListOfDefs("MemberList"); for (unsigned i = 0, e = RegList.size(); i != e; ++i) { Record *Reg = RegList[i]; if (!Reg->isSubClassOf("Register")) throw "Register Class member '" + Reg->getName() + "' does not derive from the Register class!"; Elements.push_back(Reg); } // Allow targets to override the size in bits of the RegisterClass. unsigned Size = R->getValueAsInt("Size"); Namespace = R->getValueAsString("Namespace"); SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]); SpillAlignment = R->getValueAsInt("Alignment"); MethodBodies = R->getValueAsCode("MethodBodies"); MethodProtos = R->getValueAsCode("MethodProtos"); } const std::string &CodeGenRegisterClass::getName() const { return TheDef->getName(); } void CodeGenTarget::ReadLegalValueTypes() const { const std::vector &RCs = getRegisterClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) LegalValueTypes.push_back(RCs[i].VTs[ri]); // Remove duplicates. std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), LegalValueTypes.end()), LegalValueTypes.end()); } void CodeGenTarget::ReadInstructions() const { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) throw std::string("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. std::string InstFormatName = getAsmWriter()->getValueAsString("InstFormatName"); for (unsigned i = 0, e = Insts.size(); i != e; ++i) { std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); Instructions.insert(std::make_pair(Insts[i]->getName(), CodeGenInstruction(Insts[i], AsmStr))); } } /// getInstructionsByEnumValue - Return all of the instructions defined by the /// target, ordered by their enum value. void CodeGenTarget:: getInstructionsByEnumValue(std::vector &NumberedInstructions) { std::map::const_iterator I; I = getInstructions().find("PHI"); if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; const CodeGenInstruction *PHI = &I->second; I = getInstructions().find("INLINEASM"); if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; const CodeGenInstruction *INLINEASM = &I->second; I = getInstructions().find("LABEL"); if (I == Instructions.end()) throw "Could not find 'LABEL' instruction!"; const CodeGenInstruction *LABEL = &I->second; // Print out the rest of the instructions now. NumberedInstructions.push_back(PHI); NumberedInstructions.push_back(INLINEASM); NumberedInstructions.push_back(LABEL); for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) if (&II->second != PHI && &II->second != INLINEASM && &II->second != LABEL) NumberedInstructions.push_back(&II->second); } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) { // FIXME: Only supports TIED_TO for now. std::string::size_type pos = CStr.find_first_of('='); assert(pos != std::string::npos && "Unrecognized constraint"); std::string Name = CStr.substr(0, pos); // TIED_TO: $src1 = $dst std::string::size_type wpos = Name.find_first_of(" \t"); if (wpos == std::string::npos) throw "Illegal format for tied-to constraint: '" + CStr + "'"; std::string DestOpName = Name.substr(0, wpos); std::pair DestOp = I->ParseOperandName(DestOpName, false); Name = CStr.substr(pos+1); wpos = Name.find_first_not_of(" \t"); if (wpos == std::string::npos) throw "Illegal format for tied-to constraint: '" + CStr + "'"; std::pair SrcOp = I->ParseOperandName(Name.substr(wpos), false); if (SrcOp > DestOp) throw "Illegal tied-to operand constraint '" + CStr + "'"; unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp); // Build the string for the operand. std::string OpConstraint = "((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))"; if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty()) throw "Operand '" + DestOpName + "' cannot have multiple constraints!"; I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint; } static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) { // Make sure the constraints list for each operand is large enough to hold // constraint info, even if none is present. for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i) I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands); if (CStr.empty()) return; const std::string delims(","); std::string::size_type bidx, eidx; bidx = CStr.find_first_not_of(delims); while (bidx != std::string::npos) { eidx = CStr.find_first_of(delims, bidx); if (eidx == std::string::npos) eidx = CStr.length(); ParseConstraint(CStr.substr(bidx, eidx), I); bidx = CStr.find_first_not_of(delims, eidx); } } CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr) : TheDef(R), AsmString(AsmStr) { Name = R->getValueAsString("Name"); Namespace = R->getValueAsString("Namespace"); isReturn = R->getValueAsBit("isReturn"); isBranch = R->getValueAsBit("isBranch"); isBarrier = R->getValueAsBit("isBarrier"); isCall = R->getValueAsBit("isCall"); isLoad = R->getValueAsBit("isLoad"); isStore = R->getValueAsBit("isStore"); bool isTwoAddress = R->getValueAsBit("isTwoAddress"); isPredicated = false; // set below. isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); isCommutable = R->getValueAsBit("isCommutable"); isTerminator = R->getValueAsBit("isTerminator"); isReMaterializable = R->getValueAsBit("isReMaterializable"); hasDelaySlot = R->getValueAsBit("hasDelaySlot"); usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter"); hasCtrlDep = R->getValueAsBit("hasCtrlDep"); noResults = R->getValueAsBit("noResults"); hasVariableNumberOfOperands = false; DagInit *DI; try { DI = R->getValueAsDag("OperandList"); } catch (...) { // Error getting operand list, just ignore it (sparcv9). AsmString.clear(); OperandList.clear(); return; } unsigned MIOperandNo = 0; std::set OperandNames; for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { DefInit *Arg = dynamic_cast(DI->getArg(i)); if (!Arg) throw "Illegal operand for the '" + R->getName() + "' instruction!"; Record *Rec = Arg->getDef(); std::string PrintMethod = "printOperand"; unsigned NumOps = 1; DagInit *MIOpInfo = 0; if (Rec->isSubClassOf("Operand")) { PrintMethod = Rec->getValueAsString("PrintMethod"); MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); // Verify that MIOpInfo has an 'ops' root value. if (!dynamic_cast(MIOpInfo->getOperator()) || dynamic_cast(MIOpInfo->getOperator()) ->getDef()->getName() != "ops") throw "Bad value for MIOperandInfo in operand '" + Rec->getName() + "'\n"; // If we have MIOpInfo, then we have #operands equal to number of entries // in MIOperandInfo. if (unsigned NumArgs = MIOpInfo->getNumArgs()) NumOps = NumArgs; isPredicated |= Rec->isSubClassOf("PredicateOperand"); } else if (Rec->getName() == "variable_ops") { hasVariableNumberOfOperands = true; continue; } else if (!Rec->isSubClassOf("RegisterClass") && Rec->getName() != "ptr_rc") throw "Unknown operand class '" + Rec->getName() + "' in instruction '" + R->getName() + "' instruction!"; // Check that the operand has a name and that it's unique. if (DI->getArgName(i).empty()) throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + " has no name!"; if (!OperandNames.insert(DI->getArgName(i)).second) throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + " has the same name as a previous operand!"; OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, MIOperandNo, NumOps, MIOpInfo)); MIOperandNo += NumOps; } // Parse Constraints. ParseConstraints(R->getValueAsString("Constraints"), this); // For backward compatibility: isTwoAddress means operand 1 is tied to // operand 0. if (isTwoAddress) { if (!OperandList[1].Constraints[0].empty()) throw R->getName() + ": cannot use isTwoAddress property: instruction " "already has constraint set!"; OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))"; } // Any operands with unset constraints get 0 as their constraint. for (unsigned op = 0, e = OperandList.size(); op != e; ++op) for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j) if (OperandList[op].Constraints[j].empty()) OperandList[op].Constraints[j] = "0"; // Parse the DisableEncoding field. std::string DisableEncoding = R->getValueAsString("DisableEncoding"); while (1) { std::string OpName = getToken(DisableEncoding, " ,\t"); if (OpName.empty()) break; // Figure out which operand this is. std::pair Op = ParseOperandName(OpName, false); // Mark the operand as not-to-be encoded. if (Op.second >= OperandList[Op.first].DoNotEncode.size()) OperandList[Op.first].DoNotEncode.resize(Op.second+1); OperandList[Op.first].DoNotEncode[Op.second] = true; } } /// getOperandNamed - Return the index of the operand with the specified /// non-empty name. If the instruction does not have an operand with the /// specified name, throw an exception. /// unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const { assert(!Name.empty() && "Cannot search for operand with no name!"); for (unsigned i = 0, e = OperandList.size(); i != e; ++i) if (OperandList[i].Name == Name) return i; throw "Instruction '" + TheDef->getName() + "' does not have an operand named '$" + Name + "'!"; } std::pair CodeGenInstruction::ParseOperandName(const std::string &Op, bool AllowWholeOp) { if (Op.empty() || Op[0] != '$') throw TheDef->getName() + ": Illegal operand name: '" + Op + "'"; std::string OpName = Op.substr(1); std::string SubOpName; // Check to see if this is $foo.bar. std::string::size_type DotIdx = OpName.find_first_of("."); if (DotIdx != std::string::npos) { SubOpName = OpName.substr(DotIdx+1); if (SubOpName.empty()) throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"; OpName = OpName.substr(0, DotIdx); } unsigned OpIdx = getOperandNamed(OpName); if (SubOpName.empty()) { // If no suboperand name was specified: // If one was needed, throw. if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && SubOpName.empty()) throw TheDef->getName() + ": Illegal to refer to" " whole operand part of complex operand '" + Op + "'"; // Otherwise, return the operand. return std::make_pair(OpIdx, 0U); } // Find the suboperand number involved. DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; if (MIOpInfo == 0) throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; // Find the operand with the right name. for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) if (MIOpInfo->getArgName(i) == SubOpName) return std::make_pair(OpIdx, i); // Otherwise, didn't find it! throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = ::getValueType(R->getValueAsDef("Ty")); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = R->getValueAsString("SelectFunc"); RootNodes = R->getValueAsListOfDefs("RootNodes"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInFlag") { Properties |= 1 << SDNPOptInFlag; } else { cerr << "Unsupported SD Node property '" << PropList[i]->getName() << "' on ComplexPattern '" << R->getName() << "'!\n"; exit(1); } } //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// std::vector llvm::LoadIntrinsics(const RecordKeeper &RC) { std::vector I = RC.getAllDerivedDefinitions("Intrinsic"); std::vector Result; // If we are in the context of a target .td file, get the target info so that // we can decode the current intptr_t. CodeGenTarget *CGT = 0; if (Records.getClass("Target") && Records.getAllDerivedDefinitions("Target").size() == 1) CGT = new CodeGenTarget(); for (unsigned i = 0, e = I.size(); i != e; ++i) Result.push_back(CodeGenIntrinsic(I[i], CGT)); delete CGT; return Result; } CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) { TheDef = R; std::string DefName = R->getName(); ModRef = WriteMem; if (DefName.size() <= 4 || std::string(DefName.begin(), DefName.begin()+4) != "int_") throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; EnumName = std::string(DefName.begin()+4, DefName.end()); if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); TargetPrefix = R->getValueAsString("TargetPrefix"); Name = R->getValueAsString("LLVMName"); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm."; for (unsigned i = 0, e = EnumName.size(); i != e; ++i) if (EnumName[i] == '_') Name += '.'; else Name += EnumName[i]; } else { // Verify it starts with "llvm.". if (Name.size() <= 5 || std::string(Name.begin(), Name.begin()+5) != "llvm.") throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; } // If TargetPrefix is specified, make sure that Name starts with // "llvm..". if (!TargetPrefix.empty()) { if (Name.size() < 6+TargetPrefix.size() || std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size()) != (TargetPrefix+".")) throw "Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"; } // Parse the list of argument types. ListInit *TypeList = R->getValueAsListInit("Types"); for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); ArgTypes.push_back(TyEl->getValueAsString("TypeVal")); if (CGT) ArgVTs.push_back(getValueType(TyEl->getValueAsDef("VT"), CGT)); ArgTypeDefs.push_back(TyEl); } if (ArgTypes.size() == 0) throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; // Parse the intrinsic properties. ListInit *PropList = R->getValueAsListInit("Properties"); for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); if (Property->getName() == "IntrNoMem") ModRef = NoMem; else if (Property->getName() == "IntrReadArgMem") ModRef = ReadArgMem; else if (Property->getName() == "IntrReadMem") ModRef = ReadMem; else if (Property->getName() == "IntrWriteArgMem") ModRef = WriteArgMem; else if (Property->getName() == "IntrWriteMem") ModRef = WriteMem; else assert(0 && "Unknown property!"); } }