//===-- JITEmitter.cpp - Write machine code to executable memory ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a MachineCodeEmitter object that is used by the JIT to // write machine code to memory and remember where relocatable values are. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "JIT.h" #include "JITDwarfEmitter.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRelocation.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MutexGuard.h" #include "llvm/System/Disassembler.h" #include "llvm/System/Memory.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; STATISTIC(NumBytes, "Number of bytes of machine code compiled"); STATISTIC(NumRelos, "Number of relocations applied"); static JIT *TheJIT = 0; //===----------------------------------------------------------------------===// // JIT lazy compilation code. // namespace { class JITResolverState { private: /// FunctionToStubMap - Keep track of the stub created for a particular /// function so that we can reuse them if necessary. std::map FunctionToStubMap; /// StubToFunctionMap - Keep track of the function that each stub /// corresponds to. std::map StubToFunctionMap; /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a /// particular GlobalVariable so that we can reuse them if necessary. std::map GlobalToLazyPtrMap; public: std::map& getFunctionToStubMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return FunctionToStubMap; } std::map& getStubToFunctionMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return StubToFunctionMap; } std::map& getGlobalToLazyPtrMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return GlobalToLazyPtrMap; } }; /// JITResolver - Keep track of, and resolve, call sites for functions that /// have not yet been compiled. class JITResolver { /// LazyResolverFn - The target lazy resolver function that we actually /// rewrite instructions to use. TargetJITInfo::LazyResolverFn LazyResolverFn; JITResolverState state; /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for /// external functions. std::map ExternalFnToStubMap; //map addresses to indexes in the GOT std::map revGOTMap; unsigned nextGOTIndex; static JITResolver *TheJITResolver; public: explicit JITResolver(JIT &jit) : nextGOTIndex(0) { TheJIT = &jit; LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); assert(TheJITResolver == 0 && "Multiple JIT resolvers?"); TheJITResolver = this; } ~JITResolver() { TheJITResolver = 0; } /// getFunctionStub - This returns a pointer to a function stub, creating /// one on demand as needed. void *getFunctionStub(Function *F); /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *getExternalFunctionStub(void *FnAddr); /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified /// GV address. void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress); /// AddCallbackAtLocation - If the target is capable of rewriting an /// instruction without the use of a stub, record the location of the use so /// we know which function is being used at the location. void *AddCallbackAtLocation(Function *F, void *Location) { MutexGuard locked(TheJIT->lock); /// Get the target-specific JIT resolver function. state.getStubToFunctionMap(locked)[Location] = F; return (void*)(intptr_t)LazyResolverFn; } /// getGOTIndexForAddress - Return a new or existing index in the GOT for /// an address. This function only manages slots, it does not manage the /// contents of the slots or the memory associated with the GOT. unsigned getGOTIndexForAddr(void *addr); /// JITCompilerFn - This function is called to resolve a stub to a compiled /// address. If the LLVM Function corresponding to the stub has not yet /// been compiled, this function compiles it first. static void *JITCompilerFn(void *Stub); }; } JITResolver *JITResolver::TheJITResolver = 0; /// getFunctionStub - This returns a pointer to a function stub, creating /// one on demand as needed. void *JITResolver::getFunctionStub(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this function, recycle it. void *&Stub = state.getFunctionToStubMap(locked)[F]; if (Stub) return Stub; // Call the lazy resolver function unless we already KNOW it is an external // function, in which case we just skip the lazy resolution step. void *Actual = (void*)(intptr_t)LazyResolverFn; if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) Actual = TheJIT->getPointerToFunction(F); // Otherwise, codegen a new stub. For now, the stub will call the lazy // resolver function. Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, *TheJIT->getCodeEmitter()); if (Actual != (void*)(intptr_t)LazyResolverFn) { // If we are getting the stub for an external function, we really want the // address of the stub in the GlobalAddressMap for the JIT, not the address // of the external function. TheJIT->updateGlobalMapping(F, Stub); } DOUT << "JIT: Stub emitted at [" << Stub << "] for function '" << F->getName() << "'\n"; // Finally, keep track of the stub-to-Function mapping so that the // JITCompilerFn knows which function to compile! state.getStubToFunctionMap(locked)[Stub] = F; return Stub; } /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified /// GV address. void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this global variable, recycle it. void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV]; if (LazyPtr) return LazyPtr; // Otherwise, codegen a new lazy pointer. LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GV, GVAddress, *TheJIT->getCodeEmitter()); DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '" << GV->getName() << "'\n"; return LazyPtr; } /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *JITResolver::getExternalFunctionStub(void *FnAddr) { // If we already have a stub for this function, recycle it. void *&Stub = ExternalFnToStubMap[FnAddr]; if (Stub) return Stub; Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, *TheJIT->getCodeEmitter()); DOUT << "JIT: Stub emitted at [" << Stub << "] for external function at '" << FnAddr << "'\n"; return Stub; } unsigned JITResolver::getGOTIndexForAddr(void* addr) { unsigned idx = revGOTMap[addr]; if (!idx) { idx = ++nextGOTIndex; revGOTMap[addr] = idx; DOUT << "Adding GOT entry " << idx << " for addr " << addr << "\n"; } return idx; } /// JITCompilerFn - This function is called when a lazy compilation stub has /// been entered. It looks up which function this stub corresponds to, compiles /// it if necessary, then returns the resultant function pointer. void *JITResolver::JITCompilerFn(void *Stub) { JITResolver &JR = *TheJITResolver; Function* F = 0; void* ActualPtr = 0; { // Only lock for getting the Function. The call getPointerToFunction made // in this function might trigger function materializing, which requires // JIT lock to be unlocked. MutexGuard locked(TheJIT->lock); // The address given to us for the stub may not be exactly right, it might be // a little bit after the stub. As such, use upper_bound to find it. std::map::iterator I = JR.state.getStubToFunctionMap(locked).upper_bound(Stub); assert(I != JR.state.getStubToFunctionMap(locked).begin() && "This is not a known stub!"); F = (--I)->second; ActualPtr = I->first; } // If we have already code generated the function, just return the address. void *Result = TheJIT->getPointerToGlobalIfAvailable(F); if (!Result) { // Otherwise we don't have it, do lazy compilation now. // If lazy compilation is disabled, emit a useful error message and abort. if (TheJIT->isLazyCompilationDisabled()) { cerr << "LLVM JIT requested to do lazy compilation of function '" << F->getName() << "' when lazy compiles are disabled!\n"; abort(); } // We might like to remove the stub from the StubToFunction map. // We can't do that! Multiple threads could be stuck, waiting to acquire the // lock above. As soon as the 1st function finishes compiling the function, // the next one will be released, and needs to be able to find the function // it needs to call. //JR.state.getStubToFunctionMap(locked).erase(I); DOUT << "JIT: Lazily resolving function '" << F->getName() << "' In stub ptr = " << Stub << " actual ptr = " << ActualPtr << "\n"; Result = TheJIT->getPointerToFunction(F); } // Reacquire the lock to erase the stub in the map. MutexGuard locked(TheJIT->lock); // We don't need to reuse this stub in the future, as F is now compiled. JR.state.getFunctionToStubMap(locked).erase(F); // FIXME: We could rewrite all references to this stub if we knew them. // What we will do is set the compiled function address to map to the // same GOT entry as the stub so that later clients may update the GOT // if they see it still using the stub address. // Note: this is done so the Resolver doesn't have to manage GOT memory // Do this without allocating map space if the target isn't using a GOT if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) JR.revGOTMap[Result] = JR.revGOTMap[Stub]; return Result; } //===----------------------------------------------------------------------===// // Function Index Support // On MacOS we generate an index of currently JIT'd functions so that // performance tools can determine a symbol name and accurate code range for a // PC value. Because performance tools are generally asynchronous, the code // below is written with the hope that it could be interrupted at any time and // have useful answers. However, we don't go crazy with atomic operations, we // just do a "reasonable effort". #ifdef __APPLE__ #define ENABLE_JIT_SYMBOL_TABLE 0 #endif /// JitSymbolEntry - Each function that is JIT compiled results in one of these /// being added to an array of symbols. This indicates the name of the function /// as well as the address range it occupies. This allows the client to map /// from a PC value to the name of the function. struct JitSymbolEntry { const char *FnName; // FnName - a strdup'd string. void *FnStart; intptr_t FnSize; }; struct JitSymbolTable { /// NextPtr - This forms a linked list of JitSymbolTable entries. This /// pointer is not used right now, but might be used in the future. Consider /// it reserved for future use. JitSymbolTable *NextPtr; /// Symbols - This is an array of JitSymbolEntry entries. Only the first /// 'NumSymbols' symbols are valid. JitSymbolEntry *Symbols; /// NumSymbols - This indicates the number entries in the Symbols array that /// are valid. unsigned NumSymbols; /// NumAllocated - This indicates the amount of space we have in the Symbols /// array. This is a private field that should not be read by external tools. unsigned NumAllocated; }; #if ENABLE_JIT_SYMBOL_TABLE JitSymbolTable *__jitSymbolTable; #endif static void AddFunctionToSymbolTable(const char *FnName, void *FnStart, intptr_t FnSize) { assert(FnName != 0 && FnStart != 0 && "Bad symbol to add"); JitSymbolTable **SymTabPtrPtr = 0; #if !ENABLE_JIT_SYMBOL_TABLE return; #else SymTabPtrPtr = &__jitSymbolTable; #endif // If this is the first entry in the symbol table, add the JitSymbolTable // index. if (*SymTabPtrPtr == 0) { JitSymbolTable *New = new JitSymbolTable(); New->NextPtr = 0; New->Symbols = 0; New->NumSymbols = 0; New->NumAllocated = 0; *SymTabPtrPtr = New; } JitSymbolTable *SymTabPtr = *SymTabPtrPtr; // If we have space in the table, reallocate the table. if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) { // If we don't have space, reallocate the table. unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2); JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize]; JitSymbolEntry *OldSymbols = SymTabPtr->Symbols; // Copy the old entries over. memcpy(NewSymbols, OldSymbols, SymTabPtr->NumSymbols*sizeof(OldSymbols[0])); // Swap the new symbols in, delete the old ones. SymTabPtr->Symbols = NewSymbols; SymTabPtr->NumAllocated = NewSize; delete [] OldSymbols; } // Otherwise, we have enough space, just tack it onto the end of the array. JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols]; Entry.FnName = strdup(FnName); Entry.FnStart = FnStart; Entry.FnSize = FnSize; ++SymTabPtr->NumSymbols; } static void RemoveFunctionFromSymbolTable(void *FnStart) { assert(FnStart && "Invalid function pointer"); JitSymbolTable **SymTabPtrPtr = 0; #if !ENABLE_JIT_SYMBOL_TABLE return; #else SymTabPtrPtr = &__jitSymbolTable; #endif JitSymbolTable *SymTabPtr = *SymTabPtrPtr; JitSymbolEntry *Symbols = SymTabPtr->Symbols; // Scan the table to find its index. The table is not sorted, so do a linear // scan. unsigned Index; for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index) assert(Index != SymTabPtr->NumSymbols && "Didn't find function!"); // Once we have an index, we know to nuke this entry, overwrite it with the // entry at the end of the array, making the last entry redundant. const char *OldName = Symbols[Index].FnName; Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1]; free((void*)OldName); // Drop the number of symbols in the table. --SymTabPtr->NumSymbols; // Finally, if we deleted the final symbol, deallocate the table itself. if (SymTabPtr->NumSymbols != 0) return; *SymTabPtrPtr = 0; delete [] Symbols; delete SymTabPtr; } //===----------------------------------------------------------------------===// // JITEmitter code. // namespace { /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is /// used to output functions to memory for execution. class JITEmitter : public MachineCodeEmitter { JITMemoryManager *MemMgr; // When outputting a function stub in the context of some other function, we // save BufferBegin/BufferEnd/CurBufferPtr here. unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; /// Relocations - These are the relocations that the function needs, as /// emitted. std::vector Relocations; /// MBBLocations - This vector is a mapping from MBB ID's to their address. /// It is filled in by the StartMachineBasicBlock callback and queried by /// the getMachineBasicBlockAddress callback. std::vector MBBLocations; /// ConstantPool - The constant pool for the current function. /// MachineConstantPool *ConstantPool; /// ConstantPoolBase - A pointer to the first entry in the constant pool. /// void *ConstantPoolBase; /// JumpTable - The jump tables for the current function. /// MachineJumpTableInfo *JumpTable; /// JumpTableBase - A pointer to the first entry in the jump table. /// void *JumpTableBase; /// Resolver - This contains info about the currently resolved functions. JITResolver Resolver; /// DE - The dwarf emitter for the jit. JITDwarfEmitter *DE; /// LabelLocations - This vector is a mapping from Label ID's to their /// address. std::vector LabelLocations; /// MMI - Machine module info for exception informations MachineModuleInfo* MMI; // GVSet - a set to keep track of which globals have been seen std::set GVSet; public: JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) { MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); if (jit.getJITInfo().needsGOT()) { MemMgr->AllocateGOT(); DOUT << "JIT is managing a GOT\n"; } if (ExceptionHandling) DE = new JITDwarfEmitter(jit); } ~JITEmitter() { delete MemMgr; if (ExceptionHandling) delete DE; } /// classof - Methods for support type inquiry through isa, cast, and /// dyn_cast: /// static inline bool classof(const JITEmitter*) { return true; } static inline bool classof(const MachineCodeEmitter*) { return true; } JITResolver &getJITResolver() { return Resolver; } virtual void startFunction(MachineFunction &F); virtual bool finishFunction(MachineFunction &F); void emitConstantPool(MachineConstantPool *MCP); void initJumpTableInfo(MachineJumpTableInfo *MJTI); void emitJumpTableInfo(MachineJumpTableInfo *MJTI); virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment = 1); virtual void* finishFunctionStub(const GlobalValue *F); /// allocateSpace - Reserves space in the current block if any, or /// allocate a new one of the given size. virtual void *allocateSpace(intptr_t Size, unsigned Alignment); virtual void addRelocation(const MachineRelocation &MR) { Relocations.push_back(MR); } virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { if (MBBLocations.size() <= (unsigned)MBB->getNumber()) MBBLocations.resize((MBB->getNumber()+1)*2); MBBLocations[MBB->getNumber()] = getCurrentPCValue(); } virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const; virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const; virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { assert(MBBLocations.size() > (unsigned)MBB->getNumber() && MBBLocations[MBB->getNumber()] && "MBB not emitted!"); return MBBLocations[MBB->getNumber()]; } /// deallocateMemForFunction - Deallocate all memory for the specified /// function body. void deallocateMemForFunction(Function *F) { MemMgr->deallocateMemForFunction(F); } virtual void emitLabel(uint64_t LabelID) { if (LabelLocations.size() <= LabelID) LabelLocations.resize((LabelID+1)*2); LabelLocations[LabelID] = getCurrentPCValue(); } virtual intptr_t getLabelAddress(uint64_t LabelID) const { assert(LabelLocations.size() > (unsigned)LabelID && LabelLocations[LabelID] && "Label not emitted!"); return LabelLocations[LabelID]; } virtual void setModuleInfo(MachineModuleInfo* Info) { MMI = Info; if (ExceptionHandling) DE->setModuleInfo(Info); } void setMemoryExecutable(void) { MemMgr->setMemoryExecutable(); } private: void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference, bool NoNeedStub); unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size); unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size); unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size); unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF); }; } void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, bool DoesntNeedStub) { if (GlobalVariable *GV = dyn_cast(V)) { /// FIXME: If we straightened things out, this could actually emit the /// global immediately instead of queuing it for codegen later! return TheJIT->getOrEmitGlobalVariable(GV); } if (GlobalAlias *GA = dyn_cast(V)) return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); // If we have already compiled the function, return a pointer to its body. Function *F = cast(V); void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); if (ResultPtr) return ResultPtr; if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) { // If this is an external function pointer, we can force the JIT to // 'compile' it, which really just adds it to the map. if (DoesntNeedStub) return TheJIT->getPointerToFunction(F); return Resolver.getFunctionStub(F); } // Okay, the function has not been compiled yet, if the target callback // mechanism is capable of rewriting the instruction directly, prefer to do // that instead of emitting a stub. if (DoesntNeedStub) return Resolver.AddCallbackAtLocation(F, Reference); // Otherwise, we have to emit a lazy resolving stub. return Resolver.getFunctionStub(F); } void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference, bool DoesntNeedStub) { // Make sure GV is emitted first. // FIXME: For now, if the GV is an external function we force the JIT to // compile it so the lazy pointer will contain the fully resolved address. void *GVAddress = getPointerToGlobal(V, Reference, true); return Resolver.getGlobalValueLazyPtr(V, GVAddress); } static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP) { const std::vector &Constants = MCP->getConstants(); if (Constants.empty()) return 0; MachineConstantPoolEntry CPE = Constants.back(); unsigned Size = CPE.Offset; const Type *Ty = CPE.isMachineConstantPoolEntry() ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType(); Size += TheJIT->getTargetData()->getABITypeSize(Ty); return Size; } static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return 0; unsigned NumEntries = 0; for (unsigned i = 0, e = JT.size(); i != e; ++i) NumEntries += JT[i].MBBs.size(); unsigned EntrySize = MJTI->getEntrySize(); return NumEntries * EntrySize; } static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) { if (Alignment == 0) Alignment = 1; // Since we do not know where the buffer will be allocated, be pessimistic. return Size + Alignment; } /// addSizeOfGlobal - add the size of the global (plus any alignment padding) /// into the running total Size. unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) { const Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)TheJIT->getTargetData()->getABITypeSize(ElTy); size_t GVAlign = (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV); DOUT << "Adding in size " << GVSize << " alignment " << GVAlign; DEBUG(GV->dump()); // Assume code section ends with worst possible alignment, so first // variable needs maximal padding. if (Size==0) Size = 1; Size = ((Size+GVAlign-1)/GVAlign)*GVAlign; Size += GVSize; return Size; } /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet /// but are referenced from the constant; put them in GVSet and add their /// size into the running total Size. unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size) { // If its undefined, return the garbage. if (isa(C)) return Size; // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: { Size = addSizeOfGlobalsInConstantVal(Op0, Size); break; } case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: { Size = addSizeOfGlobalsInConstantVal(Op0, Size); Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size); break; } default: { cerr << "ConstantExpr not handled: " << *CE << "\n"; abort(); } } } if (C->getType()->getTypeID() == Type::PointerTyID) if (const GlobalVariable* GV = dyn_cast(C)) if (GVSet.insert(GV).second) Size = addSizeOfGlobal(GV, Size); return Size; } /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet /// but are referenced from the given initializer. unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size) { if (!isa(Init) && !isa(Init) && !isa(Init) && !isa(Init) && !isa(Init) && Init->getType()->isFirstClassType()) Size = addSizeOfGlobalsInConstantVal(Init, Size); return Size; } /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for /// globals; then walk the initializers of those globals looking for more. /// If their size has not been considered yet, add it into the running total /// Size. unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) { unsigned Size = 0; GVSet.clear(); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const TargetInstrDesc &Desc = I->getDesc(); const MachineInstr &MI = *I; unsigned NumOps = Desc.getNumOperands(); for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) { const MachineOperand &MO = MI.getOperand(CurOp); if (MO.isGlobal()) { GlobalValue* V = MO.getGlobal(); const GlobalVariable *GV = dyn_cast(V); if (!GV) continue; // If seen in previous function, it will have an entry here. if (TheJIT->getPointerToGlobalIfAvailable(GV)) continue; // If seen earlier in this function, it will have an entry here. // FIXME: it should be possible to combine these tables, by // assuming the addresses of the new globals in this module // start at 0 (or something) and adjusting them after codegen // complete. Another possibility is to grab a marker bit in GV. if (GVSet.insert(GV).second) // A variable as yet unseen. Add in its size. Size = addSizeOfGlobal(GV, Size); } } } } DOUT << "About to look through initializers\n"; // Look for more globals that are referenced only from initializers. // GVSet.end is computed each time because the set can grow as we go. for (std::set::iterator I = GVSet.begin(); I != GVSet.end(); I++) { const GlobalVariable* GV = *I; if (GV->hasInitializer()) Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size); } return Size; } void JITEmitter::startFunction(MachineFunction &F) { uintptr_t ActualSize = 0; // Set the memory writable, if it's not already MemMgr->setMemoryWritable(); if (MemMgr->NeedsExactSize()) { DOUT << "ExactSize\n"; const TargetInstrInfo* TII = F.getTarget().getInstrInfo(); MachineJumpTableInfo *MJTI = F.getJumpTableInfo(); MachineConstantPool *MCP = F.getConstantPool(); // Ensure the constant pool/jump table info is at least 4-byte aligned. ActualSize = RoundUpToAlign(ActualSize, 16); // Add the alignment of the constant pool ActualSize = RoundUpToAlign(ActualSize, 1 << MCP->getConstantPoolAlignment()); // Add the constant pool size ActualSize += GetConstantPoolSizeInBytes(MCP); // Add the aligment of the jump table info ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment()); // Add the jump table size ActualSize += GetJumpTableSizeInBytes(MJTI); // Add the alignment for the function ActualSize = RoundUpToAlign(ActualSize, std::max(F.getFunction()->getAlignment(), 8U)); // Add the function size ActualSize += TII->GetFunctionSizeInBytes(F); DOUT << "ActualSize before globals " << ActualSize << "\n"; // Add the size of the globals that will be allocated after this function. // These are all the ones referenced from this function that were not // previously allocated. ActualSize += GetSizeOfGlobalsInBytes(F); DOUT << "ActualSize after globals " << ActualSize << "\n"; } BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), ActualSize); BufferEnd = BufferBegin+ActualSize; // Ensure the constant pool/jump table info is at least 4-byte aligned. emitAlignment(16); emitConstantPool(F.getConstantPool()); initJumpTableInfo(F.getJumpTableInfo()); // About to start emitting the machine code for the function. emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); MBBLocations.clear(); } bool JITEmitter::finishFunction(MachineFunction &F) { if (CurBufferPtr == BufferEnd) { // FIXME: Allocate more space, then try again. cerr << "JIT: Ran out of space for generated machine code!\n"; abort(); } emitJumpTableInfo(F.getJumpTableInfo()); // FnStart is the start of the text, not the start of the constant pool and // other per-function data. unsigned char *FnStart = (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); if (!Relocations.empty()) { NumRelos += Relocations.size(); // Resolve the relocations to concrete pointers. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; void *ResultPtr; if (!MR.letTargetResolve()) { if (MR.isString()) { ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); // If the target REALLY wants a stub for this function, emit it now. if (!MR.doesntNeedStub()) ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); } else if (MR.isGlobalValue()) { ResultPtr = getPointerToGlobal(MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset(), MR.doesntNeedStub()); } else if (MR.isGlobalValueLazyPtr()) { ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset(), MR.doesntNeedStub()); } else if (MR.isBasicBlock()) { ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); } else if (MR.isConstantPoolIndex()) { ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); } else { assert(MR.isJumpTableIndex()); ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); } MR.setResultPointer(ResultPtr); } // if we are managing the GOT and the relocation wants an index, // give it one if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); MR.setGOTIndex(idx); if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { DOUT << "GOT was out of date for " << ResultPtr << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"; ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; } } } TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], Relocations.size(), MemMgr->getGOTBase()); } // Update the GOT entry for F to point to the new code. if (MemMgr->isManagingGOT()) { unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { DOUT << "GOT was out of date for " << (void*)BufferBegin << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"; ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; } } unsigned char *FnEnd = CurBufferPtr; MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd); BufferBegin = CurBufferPtr = 0; NumBytes += FnEnd-FnStart; // Invalidate the icache if necessary. sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); // Add it to the JIT symbol table if the host wants it. AddFunctionToSymbolTable(F.getFunction()->getNameStart(), FnStart, FnEnd-FnStart); DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart << "] Function: " << F.getFunction()->getName() << ": " << (FnEnd-FnStart) << " bytes of text, " << Relocations.size() << " relocations\n"; Relocations.clear(); // Mark code region readable and executable if it's not so already. MemMgr->setMemoryExecutable(); #ifndef NDEBUG { DOUT << std::hex; int i; unsigned char* q = FnStart; for (i=1; q!=FnEnd; q++, i++) { if (i%8==1) DOUT << "0x" << (long)q << ": "; DOUT<< (unsigned short)*q << " "; if (i%8==0) DOUT<<"\n"; } DOUT << std::dec; if (sys::hasDisassembler()) DOUT << "Disassembled code:\n" << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart); } #endif if (ExceptionHandling) { uintptr_t ActualSize = 0; SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; if (MemMgr->NeedsExactSize()) { ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd); } BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), ActualSize); BufferEnd = BufferBegin+ActualSize; unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd); MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, FrameRegister); BufferBegin = SavedBufferBegin; BufferEnd = SavedBufferEnd; CurBufferPtr = SavedCurBufferPtr; TheJIT->RegisterTable(FrameRegister); } if (MMI) MMI->EndFunction(); return false; } void* JITEmitter::allocateSpace(intptr_t Size, unsigned Alignment) { if (BufferBegin) return MachineCodeEmitter::allocateSpace(Size, Alignment); // create a new memory block if there is no active one. // care must be taken so that BufferBegin is invalidated when a // block is trimmed BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); BufferEnd = BufferBegin+Size; return CurBufferPtr; } void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { const std::vector &Constants = MCP->getConstants(); if (Constants.empty()) return; MachineConstantPoolEntry CPE = Constants.back(); unsigned Size = CPE.Offset; const Type *Ty = CPE.isMachineConstantPoolEntry() ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType(); Size += TheJIT->getTargetData()->getABITypeSize(Ty); unsigned Align = 1 << MCP->getConstantPoolAlignment(); ConstantPoolBase = allocateSpace(Size, Align); ConstantPool = MCP; if (ConstantPoolBase == 0) return; // Buffer overflow. DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase << "] (size: " << Size << ", alignment: " << Align << ")\n"; // Initialize the memory for all of the constant pool entries. for (unsigned i = 0, e = Constants.size(); i != e; ++i) { void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset; if (Constants[i].isMachineConstantPoolEntry()) { // FIXME: add support to lower machine constant pool values into bytes! cerr << "Initialize memory with machine specific constant pool entry" << " has not been implemented!\n"; abort(); } TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr); DOUT << "JIT: CP" << i << " at [" << CAddr << "]\n"; } } void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; unsigned NumEntries = 0; for (unsigned i = 0, e = JT.size(); i != e; ++i) NumEntries += JT[i].MBBs.size(); unsigned EntrySize = MJTI->getEntrySize(); // Just allocate space for all the jump tables now. We will fix up the actual // MBB entries in the tables after we emit the code for each block, since then // we will know the final locations of the MBBs in memory. JumpTable = MJTI; JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); } void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty() || JumpTableBase == 0) return; if (TargetMachine::getRelocationModel() == Reloc::PIC_) { assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?"); // For each jump table, place the offset from the beginning of the table // to the target address. int *SlotPtr = (int*)JumpTableBase; for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &MBBs = JT[i].MBBs; // Store the offset of the basic block for this jump table slot in the // memory we allocated for the jump table in 'initJumpTableInfo' intptr_t Base = (intptr_t)SlotPtr; for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); } } } else { assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); // For each jump table, map each target in the jump table to the address of // an emitted MachineBasicBlock. intptr_t *SlotPtr = (intptr_t*)JumpTableBase; for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &MBBs = JT[i].MBBs; // Store the address of the basic block for this jump table slot in the // memory we allocated for the jump table in 'initJumpTableInfo' for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); } } } void JITEmitter::startFunctionStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment) { SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; BufferBegin = CurBufferPtr = MemMgr->allocateStub(F, StubSize, Alignment); BufferEnd = BufferBegin+StubSize+1; } void *JITEmitter::finishFunctionStub(const GlobalValue* F) { NumBytes += getCurrentPCOffset(); // Invalidate the icache if necessary. sys::Memory::InvalidateInstructionCache(BufferBegin, NumBytes); std::swap(SavedBufferBegin, BufferBegin); BufferEnd = SavedBufferEnd; CurBufferPtr = SavedCurBufferPtr; return SavedBufferBegin; } // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry // in the constant pool that was last emitted with the 'emitConstantPool' // method. // intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { assert(ConstantNum < ConstantPool->getConstants().size() && "Invalid ConstantPoolIndex!"); return (intptr_t)ConstantPoolBase + ConstantPool->getConstants()[ConstantNum].Offset; } // getJumpTableEntryAddress - Return the address of the JumpTable with index // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' // intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { const std::vector &JT = JumpTable->getJumpTables(); assert(Index < JT.size() && "Invalid jump table index!"); unsigned Offset = 0; unsigned EntrySize = JumpTable->getEntrySize(); for (unsigned i = 0; i < Index; ++i) Offset += JT[i].MBBs.size(); Offset *= EntrySize; return (intptr_t)((char *)JumpTableBase + Offset); } //===----------------------------------------------------------------------===// // Public interface to this file //===----------------------------------------------------------------------===// MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) { return new JITEmitter(jit, JMM); } // getPointerToNamedFunction - This function is used as a global wrapper to // JIT::getPointerToNamedFunction for the purpose of resolving symbols when // bugpoint is debugging the JIT. In that scenario, we are loading an .so and // need to resolve function(s) that are being mis-codegenerated, so we need to // resolve their addresses at runtime, and this is the way to do it. extern "C" { void *getPointerToNamedFunction(const char *Name) { if (Function *F = TheJIT->FindFunctionNamed(Name)) return TheJIT->getPointerToFunction(F); return TheJIT->getPointerToNamedFunction(Name); } } // getPointerToFunctionOrStub - If the specified function has been // code-gen'd, return a pointer to the function. If not, compile it, or use // a stub to implement lazy compilation if available. // void *JIT::getPointerToFunctionOrStub(Function *F) { // If we have already code generated the function, just return the address. if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Get a stub if the target supports it. assert(isa(MCE) && "Unexpected MCE?"); JITEmitter *JE = cast(getCodeEmitter()); return JE->getJITResolver().getFunctionStub(F); } /// freeMachineCodeForFunction - release machine code memory for given Function. /// void JIT::freeMachineCodeForFunction(Function *F) { // Delete translation for this from the ExecutionEngine, so it will get // retranslated next time it is used. void *OldPtr = updateGlobalMapping(F, 0); if (OldPtr) RemoveFunctionFromSymbolTable(OldPtr); // Free the actual memory for the function body and related stuff. assert(isa(MCE) && "Unexpected MCE?"); cast(MCE)->deallocateMemForFunction(F); }