//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. // // Note that this does not provide full 'java style' security and verifications, // instead it just tries to ensure that code is well formed. // // . There are no duplicated names in a symbol table... ie there !exist a val // with the same name as something in the symbol table, but with a different // address as what is in the symbol table... // * Both of a binary operator's parameters are the same type // . Verify that arithmetic and other things are only performed on first class // types. No adding structures or arrays. // . All of the constants in a switch statement are of the correct type // . The code is in valid SSA form // . It should be illegal to put a label into any other type (like a structure) // or to return one. [except constant arrays!] // * Only phi nodes can be self referential: 'add int %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. // . All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors // * All Instructions must be embeded into a basic block // . Verify that none of the Value getType()'s are null. // . Function's cannot take a void typed parameter // * Verify that a function's argument list agrees with it's declared type. // . Verify that arrays and structures have fixed elements: No unsized arrays. // * It is illegal to specify a name for a void value. // * It is illegal to have a internal function that is just a declaration // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // . All other things that are tested by asserts spread about the code... // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Module.h" #include "llvm/BasicBlock.h" #include "llvm/DerivedTypes.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/Argument.h" #include "llvm/SymbolTable.h" #include "llvm/Support/CFG.h" #include "llvm/Support/InstVisitor.h" #include "Support/STLExtras.h" #include namespace { // Anonymous namespace for class struct Verifier : public MethodPass, InstVisitor { bool Broken; Verifier() : Broken(false) {} bool doInitialization(Module *M) { verifySymbolTable(M->getSymbolTable()); return false; } bool runOnMethod(Function *F) { visit(F); return false; } // Verification methods... void verifySymbolTable(SymbolTable *ST); void visitFunction(Function *F); void visitBasicBlock(BasicBlock *BB); void visitPHINode(PHINode *PN); void visitBinaryOperator(BinaryOperator *B); void visitCallInst(CallInst *CI); void visitInstruction(Instruction *I); // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. // inline void CheckFailed(const char *Cond, const std::string &Message, const Value *V1 = 0, const Value *V2 = 0) { std::cerr << Message << "\n"; if (V1) { std::cerr << V1 << "\n"; } if (V2) { std::cerr << V2 << "\n"; } Broken = true; } }; } // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(#C, M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(#C, M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(#C, M, V1, V2); return; } } while (0) // verifySymbolTable - Verify that a function or module symbol table is ok // void Verifier::verifySymbolTable(SymbolTable *ST) { if (ST == 0) return; // No symbol table to process // Loop over all of the types in the symbol table... for (SymbolTable::iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI) for (SymbolTable::type_iterator I = TI->second.begin(), E = TI->second.end(); I != E; ++I) { Value *V = I->second; // Check that there are no void typed values in the symbol table. Values // with a void type cannot be put into symbol tables because they cannot // have names! Assert1(V->getType() != Type::VoidTy, "Values with void type are not allowed to have names!\n", V); } } // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function *F) { if (F->isExternal()) return; verifySymbolTable(F->getSymbolTable()); // Check linkage of function... Assert1(!F->isExternal() || F->hasExternalLinkage(), "Function cannot be an 'internal' 'declare'ation!", F); // Check function arguments... const FunctionType *FT = F->getFunctionType(); const Function::ArgumentListType &ArgList = F->getArgumentList(); Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", F, FT); Assert2(FT->getParamTypes().size() == ArgList.size(), "# formal arguments must match # of arguments for function type!", F, FT); // Check that the argument values match the function type for this function... if (FT->getParamTypes().size() == ArgList.size()) { for (unsigned i = 0, e = ArgList.size(); i != e; ++i) Assert2(ArgList[i]->getType() == FT->getParamType(i), "Argument value does not match function argument type!", ArgList[i], FT->getParamType(i)); } // Check the entry node BasicBlock *Entry = F->getEntryNode(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); } // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock *BB) { Assert1(BB->getTerminator(), "Basic Block does not have terminator!\n", BB); // Check that the terminator is ok as well... if (isa(BB->getTerminator())) { Instruction *I = BB->getTerminator(); Function *F = I->getParent()->getParent(); if (I->getNumOperands() == 0) Assert1(F->getReturnType() == Type::VoidTy, "Function returns no value, but ret instruction found that does!", I); else Assert2(F->getReturnType() == I->getOperand(0)->getType(), "Function return type does not match operand " "type of return inst!", I, F->getReturnType()); } } // visitPHINode - Ensure that a PHI node is well formed. void Verifier::visitPHINode(PHINode *PN) { std::vector Preds(pred_begin(PN->getParent()), pred_end(PN->getParent())); // Loop over all of the incoming values, make sure that there are // predecessors for each one... // for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { // Make sure all of the incoming values are the right types... Assert2(PN->getType() == PN->getIncomingValue(i)->getType(), "PHI node argument type does not agree with PHI node type!", PN, PN->getIncomingValue(i)); BasicBlock *BB = PN->getIncomingBlock(i); std::vector::iterator PI = find(Preds.begin(), Preds.end(), BB); Assert2(PI != Preds.end(), "PHI node has entry for basic block that" " is not a predecessor!", PN, BB); Preds.erase(PI); } // There should be no entries left in the predecessor list... for (std::vector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) Assert2(0, "PHI node does not have entry for a predecessor basic block!", PN, *I); visitInstruction(PN); } void Verifier::visitCallInst(CallInst *CI) { Assert1(isa(CI->getOperand(0)->getType()), "Called function must be a pointer!", CI); PointerType *FPTy = cast(CI->getOperand(0)->getType()); Assert1(isa(FPTy->getElementType()), "Called function is not pointer to function type!", CI); } // visitBinaryOperator - Check that both arguments to the binary operator are // of the same type! // void Verifier::visitBinaryOperator(BinaryOperator *B) { Assert2(B->getOperand(0)->getType() == B->getOperand(1)->getType(), "Both operands to a binary operator are not of the same type!", B->getOperand(0), B->getOperand(1)); visitInstruction(B); } // verifyInstruction - Verify that a non-terminator instruction is well formed. // void Verifier::visitInstruction(Instruction *I) { assert(I->getParent() && "Instruction not embedded in basic block!"); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! // for (User::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { Assert1(isa(*UI), "Use of instruction is not an instruction!", *UI); Instruction *Used = cast(*UI); Assert2(Used->getParent() != 0, "Instruction referencing instruction not" " embeded in a basic block!", I, Used); } if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) Assert1(*UI != (User*)I, "Only PHI nodes may reference their own value!", I); } Assert1(I->getType() != Type::VoidTy || !I->hasName(), "Instruction has a name, but provides a void value!", I); } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// Pass *createVerifierPass() { return new Verifier(); } bool verifyFunction(const Function *F) { Verifier V; V.visit((Function*)F); return V.Broken; } // verifyModule - Check a module for errors, printing messages on stderr. // Return true if the module is corrupt. // bool verifyModule(const Module *M) { Verifier V; V.run((Module*)M); return V.Broken; }