//===-- APInt.cpp - Implement APInt class ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Sheng Zhou and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integer // constant values and provide a variety of arithmetic operations on them. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "apint" #include "llvm/ADT/APInt.h" #include "llvm/DerivedTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include #include #ifndef NDEBUG #include #endif using namespace llvm; /// A utility function for allocating memory, checking for allocation failures, /// and ensuring the contents are zeroed. inline static uint64_t* getClearedMemory(uint32_t numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); memset(result, 0, numWords * sizeof(uint64_t)); return result; } /// A utility function for allocating memory and checking for allocation /// failure. The content is not zeroed. inline static uint64_t* getMemory(uint32_t numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); return result; } APInt::APInt(uint32_t numBits, uint64_t val) : BitWidth(numBits), VAL(0) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); if (isSingleWord()) VAL = val; else { pVal = getClearedMemory(getNumWords()); pVal[0] = val; } clearUnusedBits(); } APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]) : BitWidth(numBits), VAL(0) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); assert(bigVal && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0]; else { // Get memory, cleared to 0 pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy uint32_t words = std::min(numWords, getNumWords()); // Copy the words from bigVal to pVal memcpy(pVal, bigVal, words * APINT_WORD_SIZE); } // Make sure unused high bits are cleared clearUnusedBits(); } APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, uint8_t radix) : BitWidth(numbits), VAL(0) { fromString(numbits, StrStart, slen, radix); } APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) : BitWidth(numbits), VAL(0) { assert(!Val.empty() && "String empty?"); fromString(numbits, Val.c_str(), Val.size(), radix); } APInt::APInt(const APInt& that) : BitWidth(that.BitWidth), VAL(0) { if (isSingleWord()) VAL = that.VAL; else { pVal = getMemory(getNumWords()); memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); } } APInt::~APInt() { if (!isSingleWord() && pVal) delete [] pVal; } APInt& APInt::operator=(const APInt& RHS) { // Don't do anything for X = X if (this == &RHS) return *this; // If the bitwidths are the same, we can avoid mucking with memory if (BitWidth == RHS.getBitWidth()) { if (isSingleWord()) VAL = RHS.VAL; else memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); return *this; } if (isSingleWord()) if (RHS.isSingleWord()) VAL = RHS.VAL; else { VAL = 0; pVal = getMemory(RHS.getNumWords()); memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); } else if (getNumWords() == RHS.getNumWords()) memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); else if (RHS.isSingleWord()) { delete [] pVal; VAL = RHS.VAL; } else { delete [] pVal; pVal = getMemory(RHS.getNumWords()); memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); } BitWidth = RHS.BitWidth; return clearUnusedBits(); } APInt& APInt::operator=(uint64_t RHS) { if (isSingleWord()) VAL = RHS; else { pVal[0] = RHS; memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); } return clearUnusedBits(); } /// add_1 - This function adds a single "digit" integer, y, to the multiple /// "digit" integer array, x[]. x[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { for (uint32_t i = 0; i < len; ++i) { dest[i] = y + x[i]; if (dest[i] < y) y = 1; // Carry one to next digit. else { y = 0; // No need to carry so exit early break; } } return y; } /// @brief Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { if (isSingleWord()) ++VAL; else add_1(pVal, pVal, getNumWords(), 1); return clearUnusedBits(); } /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from /// the multi-digit integer array, x[], propagating the borrowed 1 value until /// no further borrowing is neeeded or it runs out of "digits" in x. The result /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. /// In other words, if y > x then this function returns 1, otherwise 0. /// @returns the borrow out of the subtraction static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) { for (uint32_t i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= y; if (y > X) y = 1; // We have to "borrow 1" from next "digit" else { y = 0; // No need to borrow break; // Remaining digits are unchanged so exit early } } return bool(y); } /// @brief Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { if (isSingleWord()) --VAL; else sub_1(pVal, getNumWords(), 1); return clearUnusedBits(); } /// add - This function adds the integer array x to the integer array Y and /// places the result in dest. /// @returns the carry out from the addition /// @brief General addition of 64-bit integer arrays static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, uint32_t len) { bool carry = false; for (uint32_t i = 0; i< len; ++i) { uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x dest[i] = x[i] + y[i] + carry; carry = dest[i] < limit || (carry && dest[i] == limit); } return carry; } /// Adds the RHS APint to this APInt. /// @returns this, after addition of RHS. /// @brief Addition assignment operator. APInt& APInt::operator+=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL += RHS.VAL; else { add(pVal, pVal, RHS.pVal, getNumWords()); } return clearUnusedBits(); } /// Subtracts the integer array y from the integer array x /// @returns returns the borrow out. /// @brief Generalized subtraction of 64-bit integer arrays. static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, uint32_t len) { bool borrow = false; for (uint32_t i = 0; i < len; ++i) { uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; borrow = y[i] > x_tmp || (borrow && x[i] == 0); dest[i] = x_tmp - y[i]; } return borrow; } /// Subtracts the RHS APInt from this APInt /// @returns this, after subtraction /// @brief Subtraction assignment operator. APInt& APInt::operator-=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL -= RHS.VAL; else sub(pVal, pVal, RHS.pVal, getNumWords()); return clearUnusedBits(); } /// Multiplies an integer array, x by a a uint64_t integer and places the result /// into dest. /// @returns the carry out of the multiplication. /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { // Split y into high 32-bit part (hy) and low 32-bit part (ly) uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0; // For each digit of x. for (uint32_t i = 0; i < len; ++i) { // Split x into high and low words uint64_t lx = x[i] & 0xffffffffULL; uint64_t hx = x[i] >> 32; // hasCarry - A flag to indicate if there is a carry to the next digit. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; dest[i] = carry + lx * ly; // Determine if the add above introduces carry. hasCarry = (dest[i] < carry) ? 1 : 0; carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + // (2^32 - 1) + 2^32 = 2^64. hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; } return carry; } /// Multiplies integer array x by integer array y and stores the result into /// the integer array dest. Note that dest's size must be >= xlen + ylen. /// @brief Generalized multiplicate of integer arrays. static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], uint32_t ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); for (uint32_t i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx = 0, hx = 0; for (uint32_t j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; uint64_t resul = carry + lx * ly; hasCarry = (resul < carry) ? 1 : 0; carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; resul = (carry << 32) | (resul & 0xffffffffULL); dest[i+j] += resul; carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + ((lx * hy) >> 32) + hx * hy; } dest[i+xlen] = carry; } } APInt& APInt::operator*=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL *= RHS.VAL; clearUnusedBits(); return *this; } // Get some bit facts about LHS and check for zero uint32_t lhsBits = getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; if (!lhsWords) // 0 * X ===> 0 return *this; // Get some bit facts about RHS and check for zero uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; if (!rhsWords) { // X * 0 ===> 0 clear(); return *this; } // Allocate space for the result uint32_t destWords = rhsWords + lhsWords; uint64_t *dest = getMemory(destWords); // Perform the long multiply mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); // Copy result back into *this clear(); uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); // delete dest array and return delete[] dest; return *this; } APInt& APInt::operator&=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL &= RHS.VAL; return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] &= RHS.pVal[i]; return *this; } APInt& APInt::operator|=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL |= RHS.VAL; return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] |= RHS.pVal[i]; return *this; } APInt& APInt::operator^=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL ^= RHS.VAL; this->clearUnusedBits(); return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] ^= RHS.pVal[i]; return clearUnusedBits(); } APInt APInt::operator&(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL & RHS.VAL); uint32_t numWords = getNumWords(); uint64_t* val = getMemory(numWords); for (uint32_t i = 0; i < numWords; ++i) val[i] = pVal[i] & RHS.pVal[i]; return APInt(val, getBitWidth()); } APInt APInt::operator|(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL | RHS.VAL); uint32_t numWords = getNumWords(); uint64_t *val = getMemory(numWords); for (uint32_t i = 0; i < numWords; ++i) val[i] = pVal[i] | RHS.pVal[i]; return APInt(val, getBitWidth()); } APInt APInt::operator^(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL ^ RHS.VAL); uint32_t numWords = getNumWords(); uint64_t *val = getMemory(numWords); for (uint32_t i = 0; i < numWords; ++i) val[i] = pVal[i] ^ RHS.pVal[i]; // 0^0==1 so clear the high bits in case they got set. return APInt(val, getBitWidth()).clearUnusedBits(); } bool APInt::operator !() const { if (isSingleWord()) return !VAL; for (uint32_t i = 0; i < getNumWords(); ++i) if (pVal[i]) return false; return true; } APInt APInt::operator*(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL * RHS.VAL); APInt Result(*this); Result *= RHS; return Result.clearUnusedBits(); } APInt APInt::operator+(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL + RHS.VAL); APInt Result(BitWidth, 0); add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); return Result.clearUnusedBits(); } APInt APInt::operator-(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, VAL - RHS.VAL); APInt Result(BitWidth, 0); sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); return Result.clearUnusedBits(); } bool APInt::operator[](uint32_t bitPosition) const { return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } bool APInt::operator==(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); if (isSingleWord()) return VAL == RHS.VAL; // Get some facts about the number of bits used in the two operands. uint32_t n1 = getActiveBits(); uint32_t n2 = RHS.getActiveBits(); // If the number of bits isn't the same, they aren't equal if (n1 != n2) return false; // If the number of bits fits in a word, we only need to compare the low word. if (n1 <= APINT_BITS_PER_WORD) return pVal[0] == RHS.pVal[0]; // Otherwise, compare everything for (int i = whichWord(n1 - 1); i >= 0; --i) if (pVal[i] != RHS.pVal[i]) return false; return true; } bool APInt::operator==(uint64_t Val) const { if (isSingleWord()) return VAL == Val; uint32_t n = getActiveBits(); if (n <= APINT_BITS_PER_WORD) return pVal[0] == Val; else return false; } bool APInt::ult(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) return VAL < RHS.VAL; // Get active bit length of both operands uint32_t n1 = getActiveBits(); uint32_t n2 = RHS.getActiveBits(); // If magnitude of LHS is less than RHS, return true. if (n1 < n2) return true; // If magnitude of RHS is greather than LHS, return false. if (n2 < n1) return false; // If they bot fit in a word, just compare the low order word if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) return pVal[0] < RHS.pVal[0]; // Otherwise, compare all words uint32_t topWord = whichWord(std::max(n1,n2)-1); for (int i = topWord; i >= 0; --i) { if (pVal[i] > RHS.pVal[i]) return false; if (pVal[i] < RHS.pVal[i]) return true; } return false; } bool APInt::slt(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) { int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); return lhsSext < rhsSext; } APInt lhs(*this); APInt rhs(RHS); bool lhsNeg = isNegative(); bool rhsNeg = rhs.isNegative(); if (lhsNeg) { // Sign bit is set so perform two's complement to make it positive lhs.flip(); lhs++; } if (rhsNeg) { // Sign bit is set so perform two's complement to make it positive rhs.flip(); rhs++; } // Now we have unsigned values to compare so do the comparison if necessary // based on the negativeness of the values. if (lhsNeg) if (rhsNeg) return lhs.ugt(rhs); else return true; else if (rhsNeg) return false; else return lhs.ult(rhs); } APInt& APInt::set(uint32_t bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); return *this; } APInt& APInt::set() { if (isSingleWord()) { VAL = -1ULL; return clearUnusedBits(); } // Set all the bits in all the words. for (uint32_t i = 0; i < getNumWords() - 1; ++i) pVal[i] = -1ULL; // Clear the unused ones return clearUnusedBits(); } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. APInt& APInt::clear(uint32_t bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); return *this; } /// @brief Set every bit to 0. APInt& APInt::clear() { if (isSingleWord()) VAL = 0; else memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); return *this; } /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on /// this APInt. APInt APInt::operator~() const { APInt Result(*this); Result.flip(); return Result; } /// @brief Toggle every bit to its opposite value. APInt& APInt::flip() { if (isSingleWord()) { VAL ^= -1ULL; return clearUnusedBits(); } for (uint32_t i = 0; i < getNumWords(); ++i) pVal[i] ^= -1ULL; return clearUnusedBits(); } /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. APInt& APInt::flip(uint32_t bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); if ((*this)[bitPosition]) clear(bitPosition); else set(bitPosition); return *this; } uint64_t APInt::getHashValue() const { // Put the bit width into the low order bits. uint64_t hash = BitWidth; // Add the sum of the words to the hash. if (isSingleWord()) hash += VAL << 6; // clear separation of up to 64 bits else for (uint32_t i = 0; i < getNumWords(); ++i) hash += pVal[i] << 6; // clear sepration of up to 64 bits return hash; } /// HiBits - This function returns the high "numBits" bits of this APInt. APInt APInt::getHiBits(uint32_t numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. APInt APInt::getLoBits(uint32_t numBits) const { return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), BitWidth - numBits); } bool APInt::isPowerOf2() const { return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); } uint32_t APInt::countLeadingZeros() const { uint32_t Count = 0; if (isSingleWord()) Count = CountLeadingZeros_64(VAL); else { for (uint32_t i = getNumWords(); i > 0u; --i) { if (pVal[i-1] == 0) Count += APINT_BITS_PER_WORD; else { Count += CountLeadingZeros_64(pVal[i-1]); break; } } } uint32_t remainder = BitWidth % APINT_BITS_PER_WORD; if (remainder) Count -= APINT_BITS_PER_WORD - remainder; return Count; } static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { uint32_t Count = 0; if (skip) V <<= skip; while (V && (V & (1ULL << 63))) { Count++; V <<= 1; } return Count; } uint32_t APInt::countLeadingOnes() const { if (isSingleWord()) return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD; uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits); int i = getNumWords() - 1; uint32_t Count = countLeadingOnes_64(pVal[i], shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (pVal[i] == -1ULL) Count += APINT_BITS_PER_WORD; else { Count += countLeadingOnes_64(pVal[i], 0); break; } } } return Count; } uint32_t APInt::countTrailingZeros() const { if (isSingleWord()) return CountTrailingZeros_64(VAL); uint32_t Count = 0; uint32_t i = 0; for (; i < getNumWords() && pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) Count += CountTrailingZeros_64(pVal[i]); return Count; } uint32_t APInt::countPopulation() const { if (isSingleWord()) return CountPopulation_64(VAL); uint32_t Count = 0; for (uint32_t i = 0; i < getNumWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } APInt APInt::byteSwap() const { assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(VAL)); else if (BitWidth == 32) return APInt(BitWidth, ByteSwap_32(VAL)); else if (BitWidth == 48) { uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF); Tmp1 = ByteSwap_32(Tmp1); uint64_t Tmp2 = (VAL >> 16) & 0xFFFF; Tmp2 = ByteSwap_16(Tmp2); return APInt(BitWidth, (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16)); } else if (BitWidth == 64) return APInt(BitWidth, ByteSwap_64(VAL)); else { APInt Result(BitWidth, 0); char *pByte = (char*)Result.pVal; for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { char Tmp = pByte[i]; pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; } return Result; } } APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { APInt A = API1, B = API2; while (!!B) { APInt T = B; B = APIntOps::urem(A, B); A = T; } return A; } APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { union { double D; uint64_t I; } T; T.D = Double; // Get the sign bit from the highest order bit bool isNeg = T.I >> 63; // Get the 11-bit exponent and adjust for the 1023 bit bias int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; // If the exponent is negative, the value is < 0 so just return 0. if (exp < 0) return APInt(width, 0u); // Extract the mantissa by clearing the top 12 bits (sign + exponent). uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; // If the exponent doesn't shift all bits out of the mantissa if (exp < 52) return isNeg ? -APInt(width, mantissa >> (52 - exp)) : APInt(width, mantissa >> (52 - exp)); // If the client didn't provide enough bits for us to shift the mantissa into // then the result is undefined, just return 0 if (width <= exp - 52) return APInt(width, 0); // Otherwise, we have to shift the mantissa bits up to the right location APInt Tmp(width, mantissa); Tmp = Tmp.shl(exp - 52); return isNeg ? -Tmp : Tmp; } /// RoundToDouble - This function convert this APInt to a double. /// The layout for double is as following (IEEE Standard 754): /// -------------------------------------- /// | Sign Exponent Fraction Bias | /// |-------------------------------------- | /// | 1[63] 11[62-52] 52[51-00] 1023 | /// -------------------------------------- double APInt::roundToDouble(bool isSigned) const { // Handle the simple case where the value is contained in one uint64_t. if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { if (isSigned) { int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); return double(sext); } else return double(VAL); } // Determine if the value is negative. bool isNeg = isSigned ? (*this)[BitWidth-1] : false; // Construct the absolute value if we're negative. APInt Tmp(isNeg ? -(*this) : (*this)); // Figure out how many bits we're using. uint32_t n = Tmp.getActiveBits(); // The exponent (without bias normalization) is just the number of bits // we are using. Note that the sign bit is gone since we constructed the // absolute value. uint64_t exp = n; // Return infinity for exponent overflow if (exp > 1023) { if (!isSigned || !isNeg) return double(1.0E300 * 1.0E300); // positive infinity else return double(-1.0E300 * 1.0E300); // negative infinity } exp += 1023; // Increment for 1023 bias // Number of bits in mantissa is 52. To obtain the mantissa value, we must // extract the high 52 bits from the correct words in pVal. uint64_t mantissa; unsigned hiWord = whichWord(n-1); if (hiWord == 0) { mantissa = Tmp.pVal[0]; if (n > 52) mantissa >>= n - 52; // shift down, we want the top 52 bits. } else { assert(hiWord > 0 && "huh?"); uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); mantissa = hibits | lobits; } // The leading bit of mantissa is implicit, so get rid of it. uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; union { double D; uint64_t I; } T; T.I = sign | (exp << 52) | mantissa; return T.D; } // Truncate to new width. APInt &APInt::trunc(uint32_t width) { assert(width < BitWidth && "Invalid APInt Truncate request"); assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits"); uint32_t wordsBefore = getNumWords(); BitWidth = width; uint32_t wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { if (wordsAfter == 1) { uint64_t *tmp = pVal; VAL = pVal[0]; delete [] tmp; } else { uint64_t *newVal = getClearedMemory(wordsAfter); for (uint32_t i = 0; i < wordsAfter; ++i) newVal[i] = pVal[i]; delete [] pVal; pVal = newVal; } } return clearUnusedBits(); } // Sign extend to a new width. APInt &APInt::sext(uint32_t width) { assert(width > BitWidth && "Invalid APInt SignExtend request"); assert(width <= IntegerType::MAX_INT_BITS && "Too many bits"); // If the sign bit isn't set, this is the same as zext. if (!isNegative()) { zext(width); return *this; } // The sign bit is set. First, get some facts uint32_t wordsBefore = getNumWords(); uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; BitWidth = width; uint32_t wordsAfter = getNumWords(); // Mask the high order word appropriately if (wordsBefore == wordsAfter) { uint32_t newWordBits = width % APINT_BITS_PER_WORD; // The extension is contained to the wordsBefore-1th word. uint64_t mask = (~0ULL >> (APINT_BITS_PER_WORD - newWordBits)) << wordBits; if (wordsBefore == 1) VAL |= mask; else pVal[wordsBefore-1] |= mask; clearUnusedBits(); return *this; } uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits; uint64_t *newVal = getMemory(wordsAfter); if (wordsBefore == 1) newVal[0] = VAL | mask; else { for (uint32_t i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; newVal[wordsBefore-1] |= mask; } for (uint32_t i = wordsBefore; i < wordsAfter; i++) newVal[i] = -1ULL; if (wordsBefore != 1) delete [] pVal; pVal = newVal; return clearUnusedBits(); } // Zero extend to a new width. APInt &APInt::zext(uint32_t width) { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); assert(width <= IntegerType::MAX_INT_BITS && "Too many bits"); uint32_t wordsBefore = getNumWords(); BitWidth = width; uint32_t wordsAfter = getNumWords(); if (wordsBefore != wordsAfter) { uint64_t *newVal = getClearedMemory(wordsAfter); if (wordsBefore == 1) newVal[0] = VAL; else for (uint32_t i = 0; i < wordsBefore; ++i) newVal[i] = pVal[i]; if (wordsBefore != 1) delete [] pVal; pVal = newVal; } return *this; } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(uint32_t shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // undefined else { uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth; return APInt(BitWidth, (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); } } // If all the bits were shifted out, the result is 0 or -1. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. if (shiftAmt == BitWidth) if (isNegative()) return APInt(BitWidth, -1ULL); else return APInt(BitWidth, 0); // Create some space for the result. uint64_t * val = new uint64_t[getNumWords()]; // If we are shifting less than a word, compute the shift with a simple carry if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; for (int i = getNumWords()-1; i >= 0; --i) { val[i] = (pVal[i] >> shiftAmt) | carry; carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt); } return APInt(val, BitWidth).clearUnusedBits(); } // Compute some values needed by the remaining shift algorithms uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { for (uint32_t i = 0; i < getNumWords() - offset; ++i) val[i] = pVal[i+offset]; for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++) val[i] = (isNegative() ? -1ULL : 0); return APInt(val,BitWidth).clearUnusedBits(); } // Shift the low order words uint32_t breakWord = getNumWords() - offset -1; for (uint32_t i = 0; i < breakWord; ++i) val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); // Shift the break word. uint32_t SignBit = APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD); val[breakWord] = uint64_t( (((int64_t(pVal[breakWord+offset]) << SignBit) >> SignBit) >> wordShift)); // Remaining words are 0 or -1 for (uint32_t i = breakWord+1; i < getNumWords(); ++i) val[i] = (isNegative() ? -1ULL : 0); return APInt(val, BitWidth).clearUnusedBits(); } /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt APInt::lshr(uint32_t shiftAmt) const { if (isSingleWord()) if (shiftAmt == BitWidth) return APInt(BitWidth, 0); else return APInt(BitWidth, this->VAL >> shiftAmt); // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // Create some space for the result. uint64_t * val = new uint64_t[getNumWords()]; // If we are shifting less than a word, compute the shift with a simple carry if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; for (int i = getNumWords()-1; i >= 0; --i) { val[i] = (pVal[i] >> shiftAmt) | carry; carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt); } return APInt(val, BitWidth).clearUnusedBits(); } // Compute some values needed by the remaining shift algorithms uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { for (uint32_t i = 0; i < getNumWords() - offset; ++i) val[i] = pVal[i+offset]; for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++) val[i] = 0; return APInt(val,BitWidth).clearUnusedBits(); } // Shift the low order words uint32_t breakWord = getNumWords() - offset -1; for (uint32_t i = 0; i < breakWord; ++i) val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); // Shift the break word. val[breakWord] = pVal[breakWord+offset] >> wordShift; // Remaining words are 0 for (uint32_t i = breakWord+1; i < getNumWords(); ++i) val[i] = 0; return APInt(val, BitWidth).clearUnusedBits(); } /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt APInt::shl(uint32_t shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); if (isSingleWord()) { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // avoid undefined shift results return APInt(BitWidth, VAL << shiftAmt); } // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // Create some space for the result. uint64_t * val = new uint64_t[getNumWords()]; // If we are shifting less than a word, do it the easy way if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; for (uint32_t i = 0; i < getNumWords(); i++) { val[i] = pVal[i] << shiftAmt | carry; carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); } return APInt(val, BitWidth).clearUnusedBits(); } // Compute some values needed by the remaining shift algorithms uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { for (uint32_t i = 0; i < offset; i++) val[i] = 0; for (uint32_t i = offset; i < getNumWords(); i++) val[i] = pVal[i-offset]; return APInt(val,BitWidth).clearUnusedBits(); } // Copy whole words from this to Result. uint32_t i = getNumWords() - 1; for (; i > offset; --i) val[i] = pVal[i-offset] << wordShift | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); val[offset] = pVal[0] << wordShift; for (i = 0; i < offset; ++i) val[i] = 0; return APInt(val, BitWidth).clearUnusedBits(); } // Square Root - this method computes and returns the square root of "this". // Three mechanisms are used for computation. For small values (<= 5 bits), // a table lookup is done. This gets some performance for common cases. For // values using less than 52 bits, the value is converted to double and then // the libc sqrt function is called. The result is rounded and then converted // back to a uint64_t which is then used to construct the result. Finally, // the Babylonian method for computing square roots is used. APInt APInt::sqrt() const { // Determine the magnitude of the value. uint32_t magnitude = getActiveBits(); // Use a fast table for some small values. This also gets rid of some // rounding errors in libc sqrt for small values. if (magnitude <= 5) { uint64_t result = 0; switch (isSingleWord() ? VAL : pVal[0]) { case 0 : break; case 1 : case 2 : result = 1; break; case 3 : case 4 : case 5: case 6: result = 2; break; case 7 : case 8 : case 9: case 10: case 11: case 12: result = 3; break; case 13: case 14: case 15: case 16: case 17: case 18: case 19: case 20: result = 4; break; case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: case 29: case 30: result = 5; break; case 31: result = 6; break; } return APInt(BitWidth, result); } // If the magnitude of the value fits in less than 52 bits (the precision of // an IEEE double precision floating point value), then we can use the // libc sqrt function which will probably use a hardware sqrt computation. // This should be faster than the algorithm below. if (magnitude < 52) return APInt(BitWidth, uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); // Okay, all the short cuts are exhausted. We must compute it. The following // is a classical Babylonian method for computing the square root. This code // was adapted to APINt from a wikipedia article on such computations. // See http://www.wikipedia.org/ and go to the page named // Calculate_an_integer_square_root. uint32_t nbits = BitWidth, i = 4; APInt testy(BitWidth, 16); APInt x_old(BitWidth, 1); APInt x_new(BitWidth, 0); APInt two(BitWidth, 2); // Select a good starting value using binary logarithms. for (;; i += 2, testy = testy.shl(2)) if (i >= nbits || this->ule(testy)) { x_old = x_old.shl(i / 2); break; } // Use the Babylonian method to arrive at the integer square root: for (;;) { x_new = (this->udiv(x_old) + x_old).udiv(two); if (x_old.ule(x_new)) break; x_old = x_new; } // Make sure we return the closest approximation APInt square(x_old * x_old); APInt nextSquare((x_old + 1) * (x_old +1)); if (this->ult(square)) return x_old; else if (this->ule(nextSquare)) if ((nextSquare - *this).ult(*this - square)) return x_old + 1; else return x_old; else assert(0 && "Error in APInt::sqrt computation"); return x_old + 1; } /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, uint32_t m, uint32_t n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); assert(u != v && u != q && v != q && "Must us different memory"); assert(n>1 && "n must be > 1"); // Knuth uses the value b as the base of the number system. In our case b // is 2^31 so we just set it to -1u. uint64_t b = uint64_t(1) << 32; DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n'); DEBUG(cerr << "KnuthDiv: original:"); DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); DEBUG(cerr << " by"); DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); DEBUG(cerr << '\n'); // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of // 2 allows us to shift instead of multiply and it is easy to determine the // shift amount from the leading zeros. We are basically normalizing the u // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. uint32_t shift = CountLeadingZeros_32(v[n-1]); uint32_t v_carry = 0; uint32_t u_carry = 0; if (shift) { for (uint32_t i = 0; i < m+n; ++i) { uint32_t u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } for (uint32_t i = 0; i < n; ++i) { uint32_t v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } } u[m+n] = u_carry; DEBUG(cerr << "KnuthDiv: normal:"); DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); DEBUG(cerr << " by"); DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); DEBUG(cerr << '\n'); // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; do { DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n'); // D3. [Calculate q'.]. // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test // on v[n-2] determines at high speed most of the cases in which the trial // value qp is one too large, and it eliminates all cases where qp is two // too large. uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { qp--; rp += v[n-1]; if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) qp--; } DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with // a subtraction. bool isNeg = false; for (uint32_t i = 0; i < n; ++i) { uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp << ", subtrahend == " << subtrahend << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; uint32_t k = j + i; u[k++] = result & (b-1); // subtract low word u[k++] = result >> 32; // subtract high word while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; k++; } isNeg |= borrow; DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << u[j+i+1] << '\n'); } DEBUG(cerr << "KnuthDiv: after subtraction:"); DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); DEBUG(cerr << '\n'); // The digits (u[j+n]...u[j]) should be kept positive; if the result of // this step is actually negative, (u[j+n]...u[j]) should be left as the // true value plus b**(n+1), namely as the b's complement of // the true value, and a "borrow" to the left should be remembered. // if (isNeg) { bool carry = true; // true because b's complement is "complement + 1" for (uint32_t i = 0; i <= m+n; ++i) { u[i] = ~u[i] + carry; // b's complement carry = carry && u[i] == 0; } } DEBUG(cerr << "KnuthDiv: after complement:"); DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); DEBUG(cerr << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. q[j] = qp; if (isNeg) { // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for // this possibility. Decrease q[j] by 1 q[j]--; // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). // A carry will occur to the left of u[j+n], and it should be ignored // since it cancels with the borrow that occurred in D4. bool carry = false; for (uint32_t i = 0; i < n; i++) { uint32_t limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } u[j+n] += carry; } DEBUG(cerr << "KnuthDiv: after correction:"); DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]); DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. } while (--j >= 0); DEBUG(cerr << "KnuthDiv: quotient:"); DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]); DEBUG(cerr << '\n'); // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired // remainder may be obtained by dividing u[...] by d. If r is non-null we // compute the remainder (urem uses this). if (r) { // The value d is expressed by the "shift" value above since we avoided // multiplication by d by using a shift left. So, all we have to do is // shift right here. In order to mak if (shift) { uint32_t carry = 0; DEBUG(cerr << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; carry = u[i] << (32 - shift); DEBUG(cerr << " " << r[i]); } } else { for (int i = n-1; i >= 0; i--) { r[i] = u[i]; DEBUG(cerr << " " << r[i]); } } DEBUG(cerr << '\n'); } DEBUG(cerr << std::setbase(10) << '\n'); } void APInt::divide(const APInt LHS, uint32_t lhsWords, const APInt &RHS, uint32_t rhsWords, APInt *Quotient, APInt *Remainder) { assert(lhsWords >= rhsWords && "Fractional result"); // First, compose the values into an array of 32-bit words instead of // 64-bit words. This is a necessity of both the "short division" algorithm // and the the Knuth "classical algorithm" which requires there to be native // operations for +, -, and * on an m bit value with an m*2 bit result. We // can't use 64-bit operands here because we don't have native results of // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); uint32_t n = rhsWords * 2; uint32_t m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. uint32_t SPACE[128]; uint32_t *U = 0; uint32_t *V = 0; uint32_t *Q = 0; uint32_t *R = 0; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; Q = &SPACE[(m+n+1) + n]; if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { U = new uint32_t[m + n + 1]; V = new uint32_t[n]; Q = new uint32_t[m+n]; if (Remainder) R = new uint32_t[n]; } // Initialize the dividend memset(U, 0, (m+n+1)*sizeof(uint32_t)); for (unsigned i = 0; i < lhsWords; ++i) { uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); U[i * 2] = tmp & mask; U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor memset(V, 0, (n)*sizeof(uint32_t)); for (unsigned i = 0; i < rhsWords; ++i) { uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); V[i * 2] = tmp & mask; V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); } // initialize the quotient and remainder memset(Q, 0, (m+n) * sizeof(uint32_t)); if (Remainder) memset(R, 0, n * sizeof(uint32_t)); // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the // divisor (i.e. m+n is the length of the dividend). These sizes must not // contain any zero words or the Knuth algorithm fails. for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { n--; m++; } for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) m--; // If we're left with only a single word for the divisor, Knuth doesn't work // so we implement the short division algorithm here. This is much simpler // and faster because we are certain that we can divide a 64-bit quantity // by a 32-bit quantity at hardware speed and short division is simply a // series of such operations. This is just like doing short division but we // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { uint32_t divisor = V[0]; uint32_t remainder = 0; for (int i = m+n-1; i >= 0; i--) { uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; if (partial_dividend == 0) { Q[i] = 0; remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; remainder = partial_dividend; } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { Q[i] = partial_dividend / divisor; remainder = partial_dividend - (Q[i] * divisor); } } if (R) R[0] = remainder; } else { // Now we're ready to invoke the Knuth classical divide algorithm. In this // case n > 1. KnuthDiv(U, V, Q, R, m, n); } // If the caller wants the quotient if (Quotient) { // Set up the Quotient value's memory. if (Quotient->BitWidth != LHS.BitWidth) { if (Quotient->isSingleWord()) Quotient->VAL = 0; else delete [] Quotient->pVal; Quotient->BitWidth = LHS.BitWidth; if (!Quotient->isSingleWord()) Quotient->pVal = getClearedMemory(Quotient->getNumWords()); } else Quotient->clear(); // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. if (lhsWords == 1) { uint64_t tmp = uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); if (Quotient->isSingleWord()) Quotient->VAL = tmp; else Quotient->pVal[0] = tmp; } else { assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); for (unsigned i = 0; i < lhsWords; ++i) Quotient->pVal[i] = uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); } } // If the caller wants the remainder if (Remainder) { // Set up the Remainder value's memory. if (Remainder->BitWidth != RHS.BitWidth) { if (Remainder->isSingleWord()) Remainder->VAL = 0; else delete [] Remainder->pVal; Remainder->BitWidth = RHS.BitWidth; if (!Remainder->isSingleWord()) Remainder->pVal = getClearedMemory(Remainder->getNumWords()); } else Remainder->clear(); // The remainder is in R. Reconstitute the remainder into Remainder's low // order words. if (rhsWords == 1) { uint64_t tmp = uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); if (Remainder->isSingleWord()) Remainder->VAL = tmp; else Remainder->pVal[0] = tmp; } else { assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); for (unsigned i = 0; i < rhsWords; ++i) Remainder->pVal[i] = uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); } } // Clean up the memory we allocated. if (U != &SPACE[0]) { delete [] U; delete [] V; delete [] Q; delete [] R; } } APInt APInt::udiv(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); // First, deal with the easy case if (isSingleWord()) { assert(RHS.VAL != 0 && "Divide by zero?"); return APInt(BitWidth, VAL / RHS.VAL); } // Get some facts about the LHS and RHS number of bits and words uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); uint32_t lhsBits = this->getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases if (!lhsWords) // 0 / X ===> 0 return APInt(BitWidth, 0); else if (lhsWords < rhsWords || this->ult(RHS)) { // X / Y ===> 0, iff X < Y return APInt(BitWidth, 0); } else if (*this == RHS) { // X / X ===> 1 return APInt(BitWidth, 1); } else if (lhsWords == 1 && rhsWords == 1) { // All high words are zero, just use native divide return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); } // We have to compute it the hard way. Invoke the Knuth divide algorithm. APInt Quotient(1,0); // to hold result. divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); return Quotient; } APInt APInt::urem(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { assert(RHS.VAL != 0 && "Remainder by zero?"); return APInt(BitWidth, VAL % RHS.VAL); } // Get some facts about the LHS uint32_t lhsBits = getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); // Get some facts about the RHS uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases if (lhsWords == 0) { // 0 % Y ===> 0 return APInt(BitWidth, 0); } else if (lhsWords < rhsWords || this->ult(RHS)) { // X % Y ===> X, iff X < Y return *this; } else if (*this == RHS) { // X % X == 0; return APInt(BitWidth, 0); } else if (lhsWords == 1) { // All high words are zero, just use native remainder return APInt(BitWidth, pVal[0] % RHS.pVal[0]); } // We have to compute it the hard way. Invoke the Knute divide algorithm. APInt Remainder(1,0); divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); return Remainder; } void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, uint8_t radix) { // Check our assumptions here assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); assert(str && "String is null?"); bool isNeg = str[0] == '-'; if (isNeg) str++, slen--; assert(slen <= numbits || radix != 2 && "Insufficient bit width"); assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width"); assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width"); assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width"); // Allocate memory if (!isSingleWord()) pVal = getClearedMemory(getNumWords()); // Figure out if we can shift instead of multiply uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); // Set up an APInt for the digit to add outside the loop so we don't // constantly construct/destruct it. APInt apdigit(getBitWidth(), 0); APInt apradix(getBitWidth(), radix); // Enter digit traversal loop for (unsigned i = 0; i < slen; i++) { // Get a digit uint32_t digit = 0; char cdigit = str[i]; if (isdigit(cdigit)) digit = cdigit - '0'; else if (isxdigit(cdigit)) if (cdigit >= 'a') digit = cdigit - 'a' + 10; else if (cdigit >= 'A') digit = cdigit - 'A' + 10; else assert(0 && "huh?"); else assert(0 && "Invalid character in digit string"); // Shift or multiple the value by the radix if (shift) this->shl(shift); else *this *= apradix; // Add in the digit we just interpreted if (apdigit.isSingleWord()) apdigit.VAL = digit; else apdigit.pVal[0] = digit; *this += apdigit; } // If its negative, put it in two's complement form if (isNeg) { (*this)--; this->flip(); } } std::string APInt::toString(uint8_t radix, bool wantSigned) const { assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); static const char *digits[] = { "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" }; std::string result; uint32_t bits_used = getActiveBits(); if (isSingleWord()) { char buf[65]; const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); if (format) { if (wantSigned) { int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> (APINT_BITS_PER_WORD-BitWidth); sprintf(buf, format, sextVal); } else sprintf(buf, format, VAL); } else { memset(buf, 0, 65); uint64_t v = VAL; while (bits_used) { uint32_t bit = v & 1; bits_used--; buf[bits_used] = digits[bit][0]; v >>=1; } } result = buf; return result; } if (radix != 10) { uint64_t mask = radix - 1; uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1); uint32_t nibbles = APINT_BITS_PER_WORD / shift; for (uint32_t i = 0; i < getNumWords(); ++i) { uint64_t value = pVal[i]; for (uint32_t j = 0; j < nibbles; ++j) { result.insert(0, digits[ value & mask ]); value >>= shift; } } return result; } APInt tmp(*this); APInt divisor(4, radix); APInt zero(tmp.getBitWidth(), 0); size_t insert_at = 0; if (wantSigned && tmp[BitWidth-1]) { // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. tmp.flip(); tmp++; result = "-"; insert_at = 1; } if (tmp == APInt(tmp.getBitWidth(), 0)) result = "0"; else while (tmp.ne(zero)) { APInt APdigit(1,0); APInt tmp2(tmp.getBitWidth(), 0); divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, &APdigit); uint32_t digit = APdigit.getZExtValue(); assert(digit < radix && "divide failed"); result.insert(insert_at,digits[digit]); tmp = tmp2; } return result; } #ifndef NDEBUG void APInt::dump() const { cerr << "APInt(" << BitWidth << ")=" << std::setbase(16); if (isSingleWord()) cerr << VAL; else for (unsigned i = getNumWords(); i > 0; i--) { cerr << pVal[i-1] << " "; } cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10) << ")\n" << std::setbase(10); } #endif