//===- ARMInstrThumb2.td - Thumb2 support for ARM -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb2 instruction set. // //===----------------------------------------------------------------------===// // IT block predicate field def it_pred : Operand { let PrintMethod = "printPredicateOperand"; } // IT block condition mask def it_mask : Operand { let PrintMethod = "printThumbITMask"; } // Table branch address def tb_addrmode : Operand { let PrintMethod = "printTBAddrMode"; } // Shifted operands. No register controlled shifts for Thumb2. // Note: We do not support rrx shifted operands yet. def t2_so_reg : Operand, // reg imm ComplexPattern { let PrintMethod = "printT2SOOperand"; let MIOperandInfo = (ops GPR, i32imm); } // t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value def t2_so_imm_not_XFORM : SDNodeXFormgetTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32); }]>; // t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value def t2_so_imm_neg_XFORM : SDNodeXFormgetTargetConstant(-((int)N->getZExtValue()), MVT::i32); }]>; // t2_so_imm - Match a 32-bit immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit // immediate splatted into multiple bytes of the word. t2_so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into t2_so_imm instructions: the 8-bit immediate is the least significant // bits [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11]. def t2_so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1; }]>; // t2_so_imm_not - Match an immediate that is a complement // of a t2_so_imm. def t2_so_imm_not : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1; }], t2_so_imm_not_XFORM>; // t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm. def t2_so_imm_neg : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1; }], t2_so_imm_neg_XFORM>; // Break t2_so_imm's up into two pieces. This handles immediates with up to 16 // bits set in them. This uses t2_so_imm2part to match and t2_so_imm2part_[12] // to get the first/second pieces. def t2_so_imm2part : Operand, PatLeaf<(imm), [{ return ARM_AM::isT2SOImmTwoPartVal((unsigned)N->getZExtValue()); }]> { } def t2_so_imm2part_1 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; def t2_so_imm2part_2 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; def t2_so_neg_imm2part : Operand, PatLeaf<(imm), [{ return ARM_AM::isT2SOImmTwoPartVal(-(int)N->getZExtValue()); }]> { } def t2_so_neg_imm2part_1 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; def t2_so_neg_imm2part_2 : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; /// imm1_31 predicate - True if the 32-bit immediate is in the range [1,31]. def imm1_31 : PatLeaf<(i32 imm), [{ return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 32; }]>; /// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095]. def imm0_4095 : Operand, PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 4096; }]>; def imm0_4095_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 4096; }], imm_neg_XFORM>; def imm0_255_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 255; }], imm_neg_XFORM>; // Define Thumb2 specific addressing modes. // t2addrmode_imm12 := reg + imm12 def t2addrmode_imm12 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm12Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_imm8 := reg - imm8 def t2addrmode_imm8 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } def t2am_imm8_offset : Operand, ComplexPattern{ let PrintMethod = "printT2AddrModeImm8OffsetOperand"; } // t2addrmode_imm8s4 := reg +/- (imm8 << 2) def t2addrmode_imm8s4 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8s4Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_so_reg := reg + (reg << imm2) def t2addrmode_so_reg : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeSoRegOperand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } //===----------------------------------------------------------------------===// // Multiclass helpers... // /// T2I_un_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a /// unary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_un_irs opcod, string opc, PatFrag opnode, bit Cheap = 0, bit ReMat = 0> { // shifted imm def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iMOVi, opc, "\t$dst, $src", [(set GPR:$dst, (opnode t2_so_imm:$src))]> { let isAsCheapAsAMove = Cheap; let isReMaterializable = ReMat; let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } // register def r : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr, opc, ".w\t$dst, $src", [(set GPR:$dst, (opnode GPR:$src))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src), IIC_iMOVsi, opc, ".w\t$dst, $src", [(set GPR:$dst, (opnode t2_so_reg:$src))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn } } /// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a // binary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_bin_irs opcod, string opc, PatFrag opnode, bit Commutable = 0, string wide =""> { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi, opc, "\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. let Inst{15} = 0; } // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, opc, !strconcat(wide, "\t$dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi, opc, !strconcat(wide, "\t$dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = ?; // The S bit. } } /// T2I_bin_w_irs - Same as T2I_bin_irs except these operations need // the ".w" prefix to indicate that they are wide. multiclass T2I_bin_w_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> : T2I_bin_irs; /// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are /// reversed. It doesn't define the 'rr' form since it's handled by its /// T2I_bin_irs counterpart. multiclass T2I_rbin_is opcod, string opc, PatFrag opnode> { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), IIC_iALUi, opc, ".w\t$dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), IIC_iALUsi, opc, "\t$dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 0; // The S bit. } } /// T2I_bin_s_irs - Similar to T2I_bin_irs except it sets the 's' bit so the /// instruction modifies the CPSR register. let Defs = [CPSR] in { multiclass T2I_bin_s_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi, !strconcat(opc, "s"), ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{15} = 0; } // register def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, !strconcat(opc, "s"), ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi, !strconcat(opc, "s"), ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. } } } /// T2I_bin_ii12rs - Defines a set of (op reg, {so_imm|imm0_4095|r|so_reg}) /// patterns for a binary operation that produces a value. multiclass T2I_bin_ii12rs op23_21, string opc, PatFrag opnode, bit Commutable = 0> { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24} = 1; let Inst{23-21} = op23_21; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } // 12-bit imm def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, imm0_4095:$rhs), IIC_iALUi, !strconcat(opc, "w"), "\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24} = 0; let Inst{23-21} = op23_21; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24} = 1; let Inst{23-21} = op23_21; let Inst{20} = 0; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24} = 1; let Inst{23-21} = op23_21; let Inst{20} = 0; // The S bit. } } /// T2I_adde_sube_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns /// for a binary operation that produces a value and use and define the carry /// bit. It's not predicable. let Uses = [CPSR] in { multiclass T2I_adde_sube_irs opcod, string opc, PatFrag opnode, bit Commutable = 0> { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi, opc, "\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]> { let isCommutable = Commutable; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 0; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 0; // The S bit. } // Carry setting variants // shifted imm def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi, !strconcat(opc, "s\t$dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{15} = 0; } // register def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, !strconcat(opc, "s.w\t$dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; let isCommutable = Commutable; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi, !strconcat(opc, "s.w\t$dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. } } } /// T2I_rbin_s_is - Same as T2I_rbin_is except sets 's' bit. let Defs = [CPSR] in { multiclass T2I_rbin_s_is opcod, string opc, PatFrag opnode> { // shifted imm def ri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s), IIC_iALUi, !strconcat(opc, "${s}.w\t$dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{15} = 0; } // shifted register def rs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s), IIC_iALUsi, !strconcat(opc, "${s}\t$dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. } } } /// T2I_sh_ir - Defines a set of (op reg, {so_imm|r}) patterns for a shift / // rotate operation that produces a value. multiclass T2I_sh_ir opcod, string opc, PatFrag opnode> { // 5-bit imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iMOVsi, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm1_31:$rhs))]> { let Inst{31-27} = 0b11101; let Inst{26-21} = 0b010010; let Inst{19-16} = 0b1111; // Rn let Inst{5-4} = opcod; } // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iMOVsr, opc, ".w\t$dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0100; let Inst{22-21} = opcod; let Inst{15-12} = 0b1111; let Inst{7-4} = 0b0000; } } /// T2I_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test /// patterns. Similar to T2I_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. let Defs = [CPSR] in { multiclass T2I_cmp_irs opcod, string opc, PatFrag opnode> { // shifted imm def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iCMPi, opc, ".w\t$lhs, $rhs", [(opnode GPR:$lhs, t2_so_imm:$rhs)]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{15} = 0; let Inst{11-8} = 0b1111; // Rd } // register def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr, opc, ".w\t$lhs, $rhs", [(opnode GPR:$lhs, GPR:$rhs)]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{14-12} = 0b000; // imm3 let Inst{11-8} = 0b1111; // Rd let Inst{7-6} = 0b00; // imm2 let Inst{5-4} = 0b00; // type } // shifted register def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iCMPsi, opc, ".w\t$lhs, $rhs", [(opnode GPR:$lhs, t2_so_reg:$rhs)]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = opcod; let Inst{20} = 1; // The S bit. let Inst{11-8} = 0b1111; // Rd } } } /// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns. multiclass T2I_ld opcod, string opc, PatFrag opnode> { def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr), IIC_iLoadi, opc, ".w\t$dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm12:$addr))]> { let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 1; let Inst{22-21} = opcod; let Inst{20} = 1; // load } def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr), IIC_iLoadi, opc, "\t$dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm8:$addr))]> { let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 0; let Inst{22-21} = opcod; let Inst{20} = 1; // load let Inst{11} = 1; // Offset: index==TRUE, wback==FALSE let Inst{10} = 1; // The P bit. let Inst{8} = 0; // The W bit. } def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr), IIC_iLoadr, opc, ".w\t$dst, $addr", [(set GPR:$dst, (opnode t2addrmode_so_reg:$addr))]> { let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = 0; let Inst{22-21} = opcod; let Inst{20} = 1; // load let Inst{11-6} = 0b000000; } def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr), IIC_iLoadi, opc, ".w\t$dst, $addr", [(set GPR:$dst, (opnode (ARMWrapper tconstpool:$addr)))]> { let isReMaterializable = 1; let Inst{31-27} = 0b11111; let Inst{26-25} = 0b00; let Inst{24} = signed; let Inst{23} = ?; // add = (U == '1') let Inst{22-21} = opcod; let Inst{20} = 1; // load let Inst{19-16} = 0b1111; // Rn } } /// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns. multiclass T2I_st opcod, string opc, PatFrag opnode> { def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr), IIC_iStorei, opc, ".w\t$src, $addr", [(opnode GPR:$src, t2addrmode_imm12:$addr)]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0001; let Inst{22-21} = opcod; let Inst{20} = 0; // !load } def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr), IIC_iStorei, opc, "\t$src, $addr", [(opnode GPR:$src, t2addrmode_imm8:$addr)]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0000; let Inst{22-21} = opcod; let Inst{20} = 0; // !load let Inst{11} = 1; // Offset: index==TRUE, wback==FALSE let Inst{10} = 1; // The P bit. let Inst{8} = 0; // The W bit. } def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr), IIC_iStorer, opc, ".w\t$src, $addr", [(opnode GPR:$src, t2addrmode_so_reg:$addr)]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0000; let Inst{22-21} = opcod; let Inst{20} = 0; // !load let Inst{11-6} = 0b000000; } } /// T2I_picld - Defines the PIC load pattern. class T2I_picld : T2I<(outs GPR:$dst), (ins addrmodepc:$addr), IIC_iLoadi, !strconcat("\n${addr:label}:\n\t", opc), "\t$dst, $addr", [(set GPR:$dst, (opnode addrmodepc:$addr))]>; /// T2I_picst - Defines the PIC store pattern. class T2I_picst : T2I<(outs), (ins GPR:$src, addrmodepc:$addr), IIC_iStorer, !strconcat("\n${addr:label}:\n\t", opc), "\t$src, $addr", [(opnode GPR:$src, addrmodepc:$addr)]>; /// T2I_unary_rrot - A unary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass T2I_unary_rrot opcod, string opc, PatFrag opnode> { def r : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, opc, ".w\t$dst, $src", [(set GPR:$dst, (opnode GPR:$src))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0100; let Inst{22-20} = opcod; let Inst{19-16} = 0b1111; // Rn let Inst{15-12} = 0b1111; let Inst{7} = 1; let Inst{5-4} = 0b00; // rotate } def r_rot : T2I<(outs GPR:$dst), (ins GPR:$src, i32imm:$rot), IIC_iUNAsi, opc, ".w\t$dst, $src, ror $rot", [(set GPR:$dst, (opnode (rotr GPR:$src, rot_imm:$rot)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0100; let Inst{22-20} = opcod; let Inst{19-16} = 0b1111; // Rn let Inst{15-12} = 0b1111; let Inst{7} = 1; let Inst{5-4} = {?,?}; // rotate } } /// T2I_bin_rrot - A binary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass T2I_bin_rrot opcod, string opc, PatFrag opnode> { def rr : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS), IIC_iALUr, opc, "\t$dst, $LHS, $RHS", [(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0100; let Inst{22-20} = opcod; let Inst{15-12} = 0b1111; let Inst{7} = 1; let Inst{5-4} = 0b00; // rotate } def rr_rot : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot), IIC_iALUsr, opc, "\t$dst, $LHS, $RHS, ror $rot", [(set GPR:$dst, (opnode GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0100; let Inst{22-20} = opcod; let Inst{15-12} = 0b1111; let Inst{7} = 1; let Inst{5-4} = {?,?}; // rotate } } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // // LEApcrel - Load a pc-relative address into a register without offending the // assembler. def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALUi, "adr$p.w\t$dst, #$label", []> { let Inst{31-27} = 0b11110; let Inst{25-24} = 0b10; // Inst{23:21} = '11' (add = FALSE) or '00' (add = TRUE) let Inst{22} = 0; let Inst{20} = 0; let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } def t2LEApcrelJT : T2XI<(outs GPR:$dst), (ins i32imm:$label, nohash_imm:$id, pred:$p), IIC_iALUi, "adr$p.w\t$dst, #${label}_${id}", []> { let Inst{31-27} = 0b11110; let Inst{25-24} = 0b10; // Inst{23:21} = '11' (add = FALSE) or '00' (add = TRUE) let Inst{22} = 0; let Inst{20} = 0; let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } // ADD r, sp, {so_imm|i12} def t2ADDrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), IIC_iALUi, "add", ".w\t$dst, $sp, $imm", []> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = 0b1000; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } def t2ADDrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), IIC_iALUi, "addw", "\t$dst, $sp, $imm", []> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-21} = 0b0000; let Inst{20} = 0; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } // ADD r, sp, so_reg def t2ADDrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), IIC_iALUsi, "add", ".w\t$dst, $sp, $rhs", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b1000; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } // SUB r, sp, {so_imm|i12} def t2SUBrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), IIC_iALUi, "sub", ".w\t$dst, $sp, $imm", []> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = 0b1101; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } def t2SUBrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), IIC_iALUi, "subw", "\t$dst, $sp, $imm", []> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-21} = 0b0101; let Inst{20} = 0; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } // SUB r, sp, so_reg def t2SUBrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), IIC_iALUsi, "sub", "\t$dst, $sp, $rhs", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b1101; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1101; // Rn = sp let Inst{15} = 0; } // Pseudo instruction that will expand into a t2SUBrSPi + a copy. let usesCustomInserter = 1 in { // Expanded after instruction selection. def t2SUBrSPi_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), NoItinerary, "@ sub.w\t$dst, $sp, $imm", []>; def t2SUBrSPi12_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), NoItinerary, "@ subw\t$dst, $sp, $imm", []>; def t2SUBrSPs_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), NoItinerary, "@ sub\t$dst, $sp, $rhs", []>; } // usesCustomInserter //===----------------------------------------------------------------------===// // Load / store Instructions. // // Load let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in defm t2LDR : T2I_ld<0, 0b10, "ldr", UnOpFrag<(load node:$Src)>>; // Loads with zero extension defm t2LDRH : T2I_ld<0, 0b01, "ldrh", UnOpFrag<(zextloadi16 node:$Src)>>; defm t2LDRB : T2I_ld<0, 0b00, "ldrb", UnOpFrag<(zextloadi8 node:$Src)>>; // Loads with sign extension defm t2LDRSH : T2I_ld<1, 0b01, "ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>; defm t2LDRSB : T2I_ld<1, 0b00, "ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>; let mayLoad = 1, hasExtraDefRegAllocReq = 1 in { // Load doubleword def t2LDRDi8 : T2Ii8s4<1, 0, 1, (outs GPR:$dst1, GPR:$dst2), (ins t2addrmode_imm8s4:$addr), IIC_iLoadi, "ldrd", "\t$dst1, $addr", []>; def t2LDRDpci : T2Ii8s4 { let Inst{19-16} = 0b1111; // Rn } } // zextload i1 -> zextload i8 def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(zextloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; // extload -> zextload // FIXME: Reduce the number of patterns by legalizing extload to zextload // earlier? def : T2Pat<(extloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi8 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi8 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm12:$addr), (t2LDRHi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm8:$addr), (t2LDRHi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi16 t2addrmode_so_reg:$addr), (t2LDRHs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)), (t2LDRHpci tconstpool:$addr)>; // Indexed loads let mayLoad = 1 in { def t2LDR_PRE : T2Iidxldst<0, 0b10, 1, 1, (outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoadiu, "ldr", "\t$dst, $addr!", "$addr.base = $base_wb", []>; def t2LDR_POST : T2Iidxldst<0, 0b10, 1, 0, (outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoadiu, "ldr", "\t$dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRB_PRE : T2Iidxldst<0, 0b00, 1, 1, (outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoadiu, "ldrb", "\t$dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRB_POST : T2Iidxldst<0, 0b00, 1, 0, (outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoadiu, "ldrb", "\t$dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRH_PRE : T2Iidxldst<0, 0b01, 1, 1, (outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoadiu, "ldrh", "\t$dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRH_POST : T2Iidxldst<0, 0b01, 1, 0, (outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoadiu, "ldrh", "\t$dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRSB_PRE : T2Iidxldst<1, 0b00, 1, 1, (outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoadiu, "ldrsb", "\t$dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRSB_POST : T2Iidxldst<1, 0b00, 1, 0, (outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoadiu, "ldrsb", "\t$dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRSH_PRE : T2Iidxldst<1, 0b01, 1, 1, (outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoadiu, "ldrsh", "\t$dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRSH_POST : T2Iidxldst<1, 0b01, 1, 0, (outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoadiu, "ldrsh", "\t$dst, [$base], $offset", "$base = $base_wb", []>; } // Store defm t2STR : T2I_st<0b10, "str", BinOpFrag<(store node:$LHS, node:$RHS)>>; defm t2STRB : T2I_st<0b00, "strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; defm t2STRH : T2I_st<0b01, "strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; // Store doubleword let mayLoad = 1, hasExtraSrcRegAllocReq = 1 in def t2STRDi8 : T2Ii8s4<1, 0, 0, (outs), (ins GPR:$src1, GPR:$src2, t2addrmode_imm8s4:$addr), IIC_iStorer, "strd", "\t$src1, $addr", []>; // Indexed stores def t2STR_PRE : T2Iidxldst<0, 0b10, 0, 1, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStoreiu, "str", "\t$src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STR_POST : T2Iidxldst<0, 0b10, 0, 0, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStoreiu, "str", "\t$src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRH_PRE : T2Iidxldst<0, 0b01, 0, 1, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStoreiu, "strh", "\t$src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRH_POST : T2Iidxldst<0, 0b01, 0, 0, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStoreiu, "strh", "\t$src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRB_PRE : T2Iidxldst<0, 0b00, 0, 1, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStoreiu, "strb", "\t$src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRB_POST : T2Iidxldst<0, 0b00, 0, 0, (outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStoreiu, "strb", "\t$src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; // FIXME: ldrd / strd pre / post variants //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // let mayLoad = 1, hasExtraDefRegAllocReq = 1 in def t2LDM : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops), IIC_iLoadm, "ldm${addr:submode}${p}${addr:wide}\t$addr, $wb", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b00; let Inst{24-23} = {?, ?}; // IA: '01', DB: '10' let Inst{22} = 0; let Inst{21} = ?; // The W bit. let Inst{20} = 1; // Load } let mayStore = 1, hasExtraSrcRegAllocReq = 1 in def t2STM : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops), IIC_iStorem, "stm${addr:submode}${p}${addr:wide}\t$addr, $wb", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b00; let Inst{24-23} = {?, ?}; // IA: '01', DB: '10' let Inst{22} = 0; let Inst{21} = ?; // The W bit. let Inst{20} = 0; // Store } //===----------------------------------------------------------------------===// // Move Instructions. // let neverHasSideEffects = 1 in def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr, "mov", ".w\t$dst, $src", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{14-12} = 0b000; let Inst{7-4} = 0b0000; } // AddedComplexity to ensure isel tries t2MOVi before t2MOVi16. let isReMaterializable = 1, isAsCheapAsAMove = 1, AddedComplexity = 1 in def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iMOVi, "mov", ".w\t$dst, $src", [(set GPR:$dst, t2_so_imm:$src)]> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = 0b0010; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVi, "movw", "\t$dst, $src", [(set GPR:$dst, imm0_65535:$src)]> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-21} = 0b0010; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } let Constraints = "$src = $dst" in def t2MOVTi16 : T2I<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm), IIC_iMOVi, "movt", "\t$dst, $imm", [(set GPR:$dst, (or (and GPR:$src, 0xffff), lo16AllZero:$imm))]> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-21} = 0b0110; let Inst{20} = 0; // The S bit. let Inst{15} = 0; } def : T2Pat<(or GPR:$src, 0xffff0000), (t2MOVTi16 GPR:$src, 0xffff)>; //===----------------------------------------------------------------------===// // Extend Instructions. // // Sign extenders defm t2SXTB : T2I_unary_rrot<0b100, "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; defm t2SXTH : T2I_unary_rrot<0b000, "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; defm t2SXTAB : T2I_bin_rrot<0b100, "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; defm t2SXTAH : T2I_bin_rrot<0b000, "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; // TODO: SXT(A){B|H}16 // Zero extenders let AddedComplexity = 16 in { defm t2UXTB : T2I_unary_rrot<0b101, "uxtb", UnOpFrag<(and node:$Src, 0x000000FF)>>; defm t2UXTH : T2I_unary_rrot<0b001, "uxth", UnOpFrag<(and node:$Src, 0x0000FFFF)>>; defm t2UXTB16 : T2I_unary_rrot<0b011, "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; def : T2Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), (t2UXTB16r_rot GPR:$Src, 24)>; def : T2Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), (t2UXTB16r_rot GPR:$Src, 8)>; defm t2UXTAB : T2I_bin_rrot<0b101, "uxtab", BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; defm t2UXTAH : T2I_bin_rrot<0b001, "uxtah", BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm t2ADD : T2I_bin_ii12rs<0b000, "add", BinOpFrag<(add node:$LHS, node:$RHS)>, 1>; defm t2SUB : T2I_bin_ii12rs<0b101, "sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants. defm t2ADDS : T2I_bin_s_irs <0b1000, "add", BinOpFrag<(addc node:$LHS, node:$RHS)>, 1>; defm t2SUBS : T2I_bin_s_irs <0b1101, "sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm t2ADC : T2I_adde_sube_irs<0b1010, "adc", BinOpFrag<(adde node:$LHS, node:$RHS)>, 1>; defm t2SBC : T2I_adde_sube_irs<0b1011, "sbc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // RSB defm t2RSB : T2I_rbin_is <0b1110, "rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>; defm t2RSBS : T2I_rbin_s_is <0b1110, "rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. let AddedComplexity = 1 in def : T2Pat<(add GPR:$src, imm0_255_neg:$imm), (t2SUBri GPR:$src, imm0_255_neg:$imm)>; def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm), (t2SUBri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm), (t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>; //===----------------------------------------------------------------------===// // Shift and rotate Instructions. // defm t2LSL : T2I_sh_ir<0b00, "lsl", BinOpFrag<(shl node:$LHS, node:$RHS)>>; defm t2LSR : T2I_sh_ir<0b01, "lsr", BinOpFrag<(srl node:$LHS, node:$RHS)>>; defm t2ASR : T2I_sh_ir<0b10, "asr", BinOpFrag<(sra node:$LHS, node:$RHS)>>; defm t2ROR : T2I_sh_ir<0b11, "ror", BinOpFrag<(rotr node:$LHS, node:$RHS)>>; let Uses = [CPSR] in { def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, "rrx", "\t$dst, $src", [(set GPR:$dst, (ARMrrx GPR:$src))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = ?; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{14-12} = 0b000; let Inst{7-4} = 0b0011; } } let Defs = [CPSR] in { def t2MOVsrl_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, "lsrs.w\t$dst, $src, #1", [(set GPR:$dst, (ARMsrl_flag GPR:$src))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = 1; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{5-4} = 0b01; // Shift type. // Shift amount = Inst{14-12:7-6} = 1. let Inst{14-12} = 0b000; let Inst{7-6} = 0b01; } def t2MOVsra_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, "asrs.w\t$dst, $src, #1", [(set GPR:$dst, (ARMsra_flag GPR:$src))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = 1; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{5-4} = 0b10; // Shift type. // Shift amount = Inst{14-12:7-6} = 1. let Inst{14-12} = 0b000; let Inst{7-6} = 0b01; } } //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm t2AND : T2I_bin_w_irs<0b0000, "and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>; defm t2ORR : T2I_bin_w_irs<0b0010, "orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>; defm t2EOR : T2I_bin_w_irs<0b0100, "eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>; defm t2BIC : T2I_bin_w_irs<0b0001, "bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; let Constraints = "$src = $dst" in def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm), IIC_iUNAsi, "bfc", "\t$dst, $imm", [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-20} = 0b10110; let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } def t2SBFX : T2I<(outs GPR:$dst), (ins GPR:$src, imm0_31:$lsb, imm0_31:$width), IIC_iALUi, "sbfx", "\t$dst, $src, $lsb, $width", []> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-20} = 0b10100; let Inst{15} = 0; } def t2UBFX : T2I<(outs GPR:$dst), (ins GPR:$src, imm0_31:$lsb, imm0_31:$width), IIC_iALUi, "ubfx", "\t$dst, $src, $lsb, $width", []> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-20} = 0b11100; let Inst{15} = 0; } // A8.6.18 BFI - Bitfield insert (Encoding T1) // Added for disassembler with the pattern field purposely left blank. // FIXME: Utilize this instruction in codgen. def t2BFI : T2I<(outs GPR:$dst), (ins GPR:$src, imm0_31:$lsb, imm0_31:$width), IIC_iALUi, "bfi", "\t$dst, $src, $lsb, $width", []> { let Inst{31-27} = 0b11110; let Inst{25} = 1; let Inst{24-20} = 0b10110; let Inst{15} = 0; } defm t2ORN : T2I_bin_irs<0b0011, "orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>; // Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version let AddedComplexity = 1 in defm t2MVN : T2I_un_irs <0b0011, "mvn", UnOpFrag<(not node:$Src)>, 1, 1>; def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm), (t2BICri GPR:$src, t2_so_imm_not:$imm)>; // FIXME: Disable this pattern on Darwin to workaround an assembler bug. def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm), (t2ORNri GPR:$src, t2_so_imm_not:$imm)>, Requires<[IsThumb2]>; def : T2Pat<(t2_so_imm_not:$src), (t2MVNi t2_so_imm_not:$src)>; //===----------------------------------------------------------------------===// // Multiply Instructions. // let isCommutable = 1 in def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, "mul", "\t$dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b000; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-4} = 0b0000; // Multiply } def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "mla", "\t$dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b000; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-4} = 0b0000; // Multiply } def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "mls", "\t$dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b000; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-4} = 0b0001; // Multiply and Subtract } // Extra precision multiplies with low / high results let neverHasSideEffects = 1 in { let isCommutable = 1 in { def t2SMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64, "smull", "\t$ldst, $hdst, $a, $b", []> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0111; let Inst{22-20} = 0b000; let Inst{7-4} = 0b0000; } def t2UMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64, "umull", "\t$ldst, $hdst, $a, $b", []> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0111; let Inst{22-20} = 0b010; let Inst{7-4} = 0b0000; } } // isCommutable // Multiply + accumulate def t2SMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "smlal", "\t$ldst, $hdst, $a, $b", []>{ let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0111; let Inst{22-20} = 0b100; let Inst{7-4} = 0b0000; } def t2UMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "umlal", "\t$ldst, $hdst, $a, $b", []>{ let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0111; let Inst{22-20} = 0b110; let Inst{7-4} = 0b0000; } def t2UMAAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64, "umaal", "\t$ldst, $hdst, $a, $b", []>{ let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0111; let Inst{22-20} = 0b110; let Inst{7-4} = 0b0110; } } // neverHasSideEffects // Most significant word multiply def t2SMMUL : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, "smmul", "\t$dst, $a, $b", [(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b101; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0) } def t2SMMLA : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "smmla", "\t$dst, $a, $b, $c", [(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b101; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0) } def t2SMMLS : T2I <(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32, "smmls", "\t$dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b110; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-4} = 0b0000; // No Rounding (Inst{4} = 0) } multiclass T2I_smul { def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "bb"), "\t$dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b00; } def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "bt"), "\t$dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b01; } def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "tb"), "\t$dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b10; } def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32, !strconcat(opc, "tt"), "\t$dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b11; } def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16, !strconcat(opc, "wb"), "\t$dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b011; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b00; } def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16, !strconcat(opc, "wt"), "\t$dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16)))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b011; let Inst{15-12} = 0b1111; // Ra = 0b1111 (no accumulate) let Inst{7-6} = 0b00; let Inst{5-4} = 0b01; } } multiclass T2I_smla { def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "bb"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b00; } def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "bt"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16)))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b01; } def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "tb"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b10; } def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "tt"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16)))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b001; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b11; } def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "wb"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b011; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b00; } def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16, !strconcat(opc, "wt"), "\t$dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16))))]> { let Inst{31-27} = 0b11111; let Inst{26-23} = 0b0110; let Inst{22-20} = 0b011; let Inst{15-12} = {?, ?, ?, ?}; // Ra let Inst{7-6} = 0b00; let Inst{5-4} = 0b01; } } defm t2SMUL : T2I_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; defm t2SMLA : T2I_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; // TODO: Halfword multiple accumulate long: SMLAL // TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // class T2I_misc op1, bits<2> op2, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : T2I { let Inst{31-27} = 0b11111; let Inst{26-22} = 0b01010; let Inst{21-20} = op1; let Inst{15-12} = 0b1111; let Inst{7-6} = 0b10; let Inst{5-4} = op2; } def t2CLZ : T2I_misc<0b11, 0b00, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "clz", "\t$dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>; def t2RBIT : T2I_misc<0b01, 0b10, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "rbit", "\t$dst, $src", [(set GPR:$dst, (ARMrbit GPR:$src))]>; def t2REV : T2I_misc<0b01, 0b00, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "rev", ".w\t$dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>; def t2REV16 : T2I_misc<0b01, 0b01, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "rev16", ".w\t$dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, (i32 8)), 0xFF), (or (and (shl GPR:$src, (i32 8)), 0xFF00), (or (and (srl GPR:$src, (i32 8)), 0xFF0000), (and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>; def t2REVSH : T2I_misc<0b01, 0b11, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr, "revsh", ".w\t$dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFF00), (i32 8)), (shl GPR:$src, (i32 8))), i16))]>; def t2PKHBT : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALUsi, "pkhbt", "\t$dst, $src1, $src2, LSL $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF), (and (shl GPR:$src2, (i32 imm:$shamt)), 0xFFFF0000)))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-20} = 0b01100; let Inst{5} = 0; // BT form let Inst{4} = 0; } // Alternate cases for PKHBT where identities eliminate some nodes. def : T2Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)), (t2PKHBT GPR:$src1, GPR:$src2, 0)>; def : T2Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)), (t2PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>; def t2PKHTB : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALUsi, "pkhtb", "\t$dst, $src1, $src2, ASR $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000), (and (sra GPR:$src2, imm16_31:$shamt), 0xFFFF)))]> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-20} = 0b01100; let Inst{5} = 1; // TB form let Inst{4} = 0; } // Alternate cases for PKHTB where identities eliminate some nodes. Note that // a shift amount of 0 is *not legal* here, it is PKHBT instead. def : T2Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, (i32 16))), (t2PKHTB GPR:$src1, GPR:$src2, 16)>; def : T2Pat<(or (and GPR:$src1, 0xFFFF0000), (and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)), (t2PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>; //===----------------------------------------------------------------------===// // Comparison Instructions... // defm t2CMP : T2I_cmp_irs<0b1101, "cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm t2CMPz : T2I_cmp_irs<0b1101, "cmp", BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>; //FIXME: Disable CMN, as CCodes are backwards from compare expectations // Compare-to-zero still works out, just not the relationals //defm t2CMN : T2I_cmp_irs<0b1000, "cmn", // BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; defm t2CMNz : T2I_cmp_irs<0b1000, "cmn", BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>; //def : T2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm), // (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(ARMcmpZ GPR:$src, t2_so_imm_neg:$imm), (t2CMNzri GPR:$src, t2_so_imm_neg:$imm)>; defm t2TST : T2I_cmp_irs<0b0000, "tst", BinOpFrag<(ARMcmpZ (and node:$LHS, node:$RHS), 0)>>; defm t2TEQ : T2I_cmp_irs<0b0100, "teq", BinOpFrag<(ARMcmpZ (xor node:$LHS, node:$RHS), 0)>>; // A8.6.27 CBNZ, CBZ - Compare and branch on (non)zero. // Short range conditional branch. Looks awesome for loops. Need to figure // out how to use this one. // Conditional moves // FIXME: should be able to write a pattern for ARMcmov, but can't use // a two-value operand where a dag node expects two operands. :( def t2MOVCCr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true), IIC_iCMOVr, "mov", ".w\t$dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst"> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = 0; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{14-12} = 0b000; let Inst{7-4} = 0b0000; } def t2MOVCCi : T2I<(outs GPR:$dst), (ins GPR:$false, t2_so_imm:$true), IIC_iCMOVi, "mov", ".w\t$dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, t2_so_imm:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst"> { let Inst{31-27} = 0b11110; let Inst{25} = 0; let Inst{24-21} = 0b0010; let Inst{20} = 0; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{15} = 0; } class T2I_movcc_sh opcod, dag oops, dag iops, InstrItinClass itin, string opc, string asm, list pattern> : T2I { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b01; let Inst{24-21} = 0b0010; let Inst{20} = 0; // The S bit. let Inst{19-16} = 0b1111; // Rn let Inst{5-4} = opcod; // Shift type. } def t2MOVCClsl : T2I_movcc_sh<0b00, (outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iCMOVsi, "lsl", ".w\t$dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCClsr : T2I_movcc_sh<0b01, (outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iCMOVsi, "lsr", ".w\t$dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCCasr : T2I_movcc_sh<0b10, (outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iCMOVsi, "asr", ".w\t$dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCCror : T2I_movcc_sh<0b11, (outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iCMOVsi, "ror", ".w\t$dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; //===----------------------------------------------------------------------===// // Atomic operations intrinsics // // memory barriers protect the atomic sequences let hasSideEffects = 1 in { def t2Int_MemBarrierV7 : AInoP<(outs), (ins), Pseudo, NoItinerary, "dmb", "", [(ARMMemBarrierV7)]>, Requires<[IsThumb2]> { let Inst{31-4} = 0xF3BF8F5; // FIXME: add support for options other than a full system DMB let Inst{3-0} = 0b1111; } def t2Int_SyncBarrierV7 : AInoP<(outs), (ins), Pseudo, NoItinerary, "dsb", "", [(ARMSyncBarrierV7)]>, Requires<[IsThumb2]> { let Inst{31-4} = 0xF3BF8F4; // FIXME: add support for options other than a full system DSB let Inst{3-0} = 0b1111; } } class T2I_ldrex opcod, dag oops, dag iops, AddrMode am, SizeFlagVal sz, InstrItinClass itin, string opc, string asm, string cstr, list pattern, bits<4> rt2 = 0b1111> : Thumb2I { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0001101; let Inst{11-8} = rt2; let Inst{7-6} = 0b01; let Inst{5-4} = opcod; let Inst{3-0} = 0b1111; } class T2I_strex opcod, dag oops, dag iops, AddrMode am, SizeFlagVal sz, InstrItinClass itin, string opc, string asm, string cstr, list pattern, bits<4> rt2 = 0b1111> : Thumb2I { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0001100; let Inst{11-8} = rt2; let Inst{7-6} = 0b01; let Inst{5-4} = opcod; } let mayLoad = 1 in { def t2LDREXB : T2I_ldrex<0b00, (outs GPR:$dest), (ins GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "ldrexb", "\t$dest, [$ptr]", "", []>; def t2LDREXH : T2I_ldrex<0b01, (outs GPR:$dest), (ins GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "ldrexh", "\t$dest, [$ptr]", "", []>; def t2LDREX : Thumb2I<(outs GPR:$dest), (ins GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "ldrex", "\t$dest, [$ptr]", "", []> { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0000101; let Inst{11-8} = 0b1111; let Inst{7-0} = 0b00000000; // imm8 = 0 } def t2LDREXD : T2I_ldrex<0b11, (outs GPR:$dest, GPR:$dest2), (ins GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "ldrexd", "\t$dest, $dest2, [$ptr]", "", [], {?, ?, ?, ?}>; } let mayStore = 1, Constraints = "@earlyclobber $success" in { def t2STREXB : T2I_strex<0b00, (outs GPR:$success), (ins GPR:$src, GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "strexb", "\t$success, $src, [$ptr]", "", []>; def t2STREXH : T2I_strex<0b01, (outs GPR:$success), (ins GPR:$src, GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "strexh", "\t$success, $src, [$ptr]", "", []>; def t2STREX : Thumb2I<(outs GPR:$success), (ins GPR:$src, GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "strex", "\t$success, $src, [$ptr]", "", []> { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0000100; let Inst{7-0} = 0b00000000; // imm8 = 0 } def t2STREXD : T2I_strex<0b11, (outs GPR:$success), (ins GPR:$src, GPR:$src2, GPR:$ptr), AddrModeNone, Size4Bytes, NoItinerary, "strexd", "\t$success, $src, $src2, [$ptr]", "", [], {?, ?, ?, ?}>; } //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. let isCall = 1, Defs = [R0, R12, LR, CPSR] in { def t2TPsoft : T2XI<(outs), (ins), IIC_Br, "bl\t__aeabi_read_tp", [(set R0, ARMthread_pointer)]> { let Inst{31-27} = 0b11110; let Inst{15-14} = 0b11; let Inst{12} = 1; } } //===----------------------------------------------------------------------===// // SJLJ Exception handling intrinsics // eh_sjlj_setjmp() is an instruction sequence to store the return // address and save #0 in R0 for the non-longjmp case. // Since by its nature we may be coming from some other function to get // here, and we're using the stack frame for the containing function to // save/restore registers, we can't keep anything live in regs across // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon // when we get here from a longjmp(). We force everthing out of registers // except for our own input by listing the relevant registers in Defs. By // doing so, we also cause the prologue/epilogue code to actively preserve // all of the callee-saved resgisters, which is exactly what we want. let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31 ] in { def t2Int_eh_sjlj_setjmp : Thumb2XI<(outs), (ins GPR:$src), AddrModeNone, SizeSpecial, NoItinerary, "str.w\tsp, [$src, #+8] @ eh_setjmp begin\n" "\tadr\tr12, 0f\n" "\torr.w\tr12, r12, #1\n" "\tstr.w\tr12, [$src, #+4]\n" "\tmovs\tr0, #0\n" "\tb\t1f\n" "0:\tmovs\tr0, #1 @ eh_setjmp end\n" "1:", "", [(set R0, (ARMeh_sjlj_setjmp GPR:$src))]>; } //===----------------------------------------------------------------------===// // Control-Flow Instructions // // FIXME: remove when we have a way to marking a MI with these properties. // FIXME: $dst1 should be a def. But the extra ops must be in the end of the // operand list. // FIXME: Should pc be an implicit operand like PICADD, etc? let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, hasExtraDefRegAllocReq = 1 in def t2LDM_RET : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops), IIC_Br, "ldm${addr:submode}${p}${addr:wide}\t$addr, $wb", []> { let Inst{31-27} = 0b11101; let Inst{26-25} = 0b00; let Inst{24-23} = {?, ?}; // IA: '01', DB: '10' let Inst{22} = 0; let Inst{21} = ?; // The W bit. let Inst{20} = 1; // Load } let isBranch = 1, isTerminator = 1, isBarrier = 1 in { let isPredicable = 1 in def t2B : T2XI<(outs), (ins brtarget:$target), IIC_Br, "b.w\t$target", [(br bb:$target)]> { let Inst{31-27} = 0b11110; let Inst{15-14} = 0b10; let Inst{12} = 1; } let isNotDuplicable = 1, isIndirectBranch = 1 in { def t2BR_JT : T2JTI<(outs), (ins GPR:$target, GPR:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "mov\tpc, $target\n$jt", [(ARMbr2jt GPR:$target, GPR:$index, tjumptable:$jt, imm:$id)]> { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0100100; let Inst{19-16} = 0b1111; let Inst{14-12} = 0b000; let Inst{11-8} = 0b1111; // Rd = pc let Inst{7-4} = 0b0000; } // FIXME: Add a non-pc based case that can be predicated. def t2TBB : T2JTI<(outs), (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "tbb\t$index\n$jt", []> { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0001101; let Inst{19-16} = 0b1111; // Rn = pc (table follows this instruction) let Inst{15-8} = 0b11110000; let Inst{7-4} = 0b0000; // B form } def t2TBH : T2JTI<(outs), (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "tbh\t$index\n$jt", []> { let Inst{31-27} = 0b11101; let Inst{26-20} = 0b0001101; let Inst{19-16} = 0b1111; // Rn = pc (table follows this instruction) let Inst{15-8} = 0b11110000; let Inst{7-4} = 0b0001; // H form } } // isNotDuplicable, isIndirectBranch } // isBranch, isTerminator, isBarrier // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( let isBranch = 1, isTerminator = 1 in def t2Bcc : T2I<(outs), (ins brtarget:$target), IIC_Br, "b", ".w\t$target", [/*(ARMbrcond bb:$target, imm:$cc)*/]> { let Inst{31-27} = 0b11110; let Inst{15-14} = 0b10; let Inst{12} = 0; } // IT block def t2IT : Thumb2XI<(outs), (ins it_pred:$cc, it_mask:$mask), AddrModeNone, Size2Bytes, IIC_iALUx, "it$mask\t$cc", "", []> { // 16-bit instruction. let Inst{31-16} = 0x0000; let Inst{15-8} = 0b10111111; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // Two piece so_imms. def : T2Pat<(or GPR:$LHS, t2_so_imm2part:$RHS), (t2ORRri (t2ORRri GPR:$LHS, (t2_so_imm2part_1 imm:$RHS)), (t2_so_imm2part_2 imm:$RHS))>; def : T2Pat<(xor GPR:$LHS, t2_so_imm2part:$RHS), (t2EORri (t2EORri GPR:$LHS, (t2_so_imm2part_1 imm:$RHS)), (t2_so_imm2part_2 imm:$RHS))>; def : T2Pat<(add GPR:$LHS, t2_so_imm2part:$RHS), (t2ADDri (t2ADDri GPR:$LHS, (t2_so_imm2part_1 imm:$RHS)), (t2_so_imm2part_2 imm:$RHS))>; def : T2Pat<(add GPR:$LHS, t2_so_neg_imm2part:$RHS), (t2SUBri (t2SUBri GPR:$LHS, (t2_so_neg_imm2part_1 imm:$RHS)), (t2_so_neg_imm2part_2 imm:$RHS))>; // 32-bit immediate using movw + movt. // This is a single pseudo instruction to make it re-materializable. Remove // when we can do generalized remat. let isReMaterializable = 1 in def t2MOVi32imm : T2Ix2<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVi, "movw", "\t$dst, ${src:lo16}\n\tmovt${p}\t$dst, ${src:hi16}", [(set GPR:$dst, (i32 imm:$src))]>; // ConstantPool, GlobalAddress, and JumpTable def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2LEApcrel tglobaladdr :$dst)>, Requires<[IsThumb2, DontUseMovt]>; def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>; def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2MOVi32imm tglobaladdr :$dst)>, Requires<[IsThumb2, UseMovt]>; def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id), (t2LEApcrelJT tjumptable:$dst, imm:$id)>; // Pseudo instruction that combines ldr from constpool and add pc. This should // be expanded into two instructions late to allow if-conversion and // scheduling. let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def t2LDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp), NoItinerary, "@ ldr.w\t$dst, $addr\n$cp:\n\tadd\t$dst, pc", [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), imm:$cp))]>, Requires<[IsThumb2]>;