//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This pass lowers the pseudo control flow instructions (SI_IF_NZ, ELSE, ENDIF) /// to predicated instructions. /// /// All control flow (except loops) is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2 /// SI_IF_NZ %VCC /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 /// ELSE /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0 /// ENDIF /// /// becomes: /// /// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask /// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch /// /// label0: /// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block /// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block /// label1: /// %EXEC = S_OR_B64 %EXEC, %SGPR2 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; namespace { class SILowerControlFlowPass : public MachineFunctionPass { private: static char ID; const TargetInstrInfo *TII; std::vector PredicateStack; std::vector UnusedRegisters; unsigned allocReg(); void freeReg(unsigned Reg); public: SILowerControlFlowPass(TargetMachine &tm) : MachineFunctionPass(ID), TII(tm.getInstrInfo()) { } virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "SI Lower control flow instructions"; } }; } // End anonymous namespace char SILowerControlFlowPass::ID = 0; FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) { return new SILowerControlFlowPass(tm); } bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) { // Find all the unused registers that can be used for the predicate stack. for (TargetRegisterClass::iterator I = AMDGPU::SReg_64RegClass.begin(), S = AMDGPU::SReg_64RegClass.end(); I != S; ++I) { unsigned Reg = *I; if (!MF.getRegInfo().isPhysRegUsed(Reg)) { UnusedRegisters.insert(UnusedRegisters.begin(), Reg); } } for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end(); BB != BB_E; ++BB) { MachineBasicBlock &MBB = *BB; for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I); I != MBB.end(); I = Next) { Next = llvm::next(I); MachineInstr &MI = *I; unsigned Reg; switch (MI.getOpcode()) { default: break; case AMDGPU::SI_IF_NZ: Reg = allocReg(); BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg) .addOperand(MI.getOperand(0)); // VCC BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64), Reg) .addReg(Reg) .addReg(AMDGPU::EXEC); MI.eraseFromParent(); PredicateStack.push_back(Reg); break; case AMDGPU::ELSE: Reg = PredicateStack.back(); BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Reg) .addReg(Reg); BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(Reg) .addReg(AMDGPU::EXEC); MI.eraseFromParent(); break; case AMDGPU::ENDIF: Reg = PredicateStack.back(); PredicateStack.pop_back(); BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Reg); freeReg(Reg); if (MF.getInfo()->ShaderType == ShaderType::PIXEL && PredicateStack.empty()) { // If the exec mask is non-zero, skip the next two instructions BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(3) .addReg(AMDGPU::EXEC); // Exec mask is zero: Export to NULL target... BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::EXP)) .addImm(0) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addImm(0) .addImm(1) .addImm(1) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0) .addReg(AMDGPU::SREG_LIT_0); // ... and terminate wavefront BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM)); } MI.eraseFromParent(); break; } } } return true; } unsigned SILowerControlFlowPass::allocReg() { assert(!UnusedRegisters.empty() && "Ran out of registers for predicate stack"); unsigned Reg = UnusedRegisters.back(); UnusedRegisters.pop_back(); return Reg; } void SILowerControlFlowPass::freeReg(unsigned Reg) { UnusedRegisters.push_back(Reg); }