//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/Statistic.h" using namespace llvm; X86VectorEnum llvm::X86Vector = NoSSE; namespace { cl::opt NoSSAPeephole("disable-ssa-peephole", cl::init(true), cl::desc("Disable the ssa-based peephole optimizer " "(defaults to disabled)")); cl::opt DisableOutput("disable-x86-llc-output", cl::Hidden, cl::desc("Disable the X86 asm printer, for use " "when profiling the code generator.")); #if 0 // FIXME: This should eventually be handled with target triples and // subtarget support! cl::opt SSEArg( cl::desc("Enable SSE support in the X86 target:"), cl::values( clEnumValN(SSE, "sse", " Enable SSE support"), clEnumValN(SSE2, "sse2", " Enable SSE and SSE2 support"), clEnumValN(SSE3, "sse3", " Enable SSE, SSE2, and SSE3 support"), clEnumValEnd), cl::location(X86Vector), cl::init(NoSSE)); #endif // Register the target. RegisterTarget X("x86", " IA-32 (Pentium and above)"); } unsigned X86TargetMachine::getJITMatchQuality() { #if defined(i386) || defined(__i386__) || defined(__x86__) return 10; #else return 0; #endif } unsigned X86TargetMachine::getModuleMatchQuality(const Module &M) { if (M.getEndianness() == Module::LittleEndian && M.getPointerSize() == Module::Pointer32) return 10; // Direct match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } /// X86TargetMachine ctor - Create an ILP32 architecture model /// X86TargetMachine::X86TargetMachine(const Module &M, IntrinsicLowering *IL) : TargetMachine("X86", IL, true, 4, 4, 4, 4, 4), FrameInfo(TargetFrameInfo::StackGrowsDown, 8, -4), JITInfo(*this) { } // addPassesToEmitAssembly - We currently use all of the same passes as the JIT // does to emit statically compiled machine code. bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); PM.add(createX86SimpleInstructionSelector(*this)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, *this)); if (!DisableOutput) PM.add(createX86CodePrinterPass(Out, *this)); // Delete machine code for this function PM.add(createMachineCodeDeleter()); return false; // success! } /// addPassesToJITCompile - Add passes to the specified pass manager to /// implement a fast dynamic compiler for this target. Return true if this is /// not supported for this target. /// void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); PM.add(createX86SimpleInstructionSelector(TM)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // FIXME: Add SSA based peephole optimizer here. // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, TM)); }