//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class contains all of the shared state and information that is used by // the BugPoint tool to track down errors in optimizations. This class is the // main driver class that invokes all sub-functionality. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ToolRunner.h" #include "llvm/Linker.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Assembly/Parser.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compressor.h" #include "llvm/Support/FileUtilities.h" #include #include using namespace llvm; // Anonymous namespace to define command line options for debugging. // namespace { // Output - The user can specify a file containing the expected output of the // program. If this filename is set, it is used as the reference diff source, // otherwise the raw input run through an interpreter is used as the reference // source. // cl::opt OutputFile("output", cl::desc("Specify a reference program output " "(for miscompilation detection)")); } /// setNewProgram - If we reduce or update the program somehow, call this method /// to update bugdriver with it. This deletes the old module and sets the /// specified one as the current program. void BugDriver::setNewProgram(Module *M) { delete Program; Program = M; } /// getPassesString - Turn a list of passes into a string which indicates the /// command line options that must be passed to add the passes. /// std::string llvm::getPassesString(const std::vector &Passes) { std::string Result; for (unsigned i = 0, e = Passes.size(); i != e; ++i) { if (i) Result += " "; Result += "-"; Result += Passes[i]->getPassArgument(); } return Result; } BugDriver::BugDriver(const char *toolname, bool as_child, bool find_bugs, unsigned timeout) : ToolName(toolname), ReferenceOutputFile(OutputFile), Program(0), Interpreter(0), cbe(0), gcc(0), run_as_child(as_child), run_find_bugs(find_bugs), Timeout(timeout) {} /// ParseInputFile - Given a bytecode or assembly input filename, parse and /// return it, or return null if not possible. /// Module *llvm::ParseInputFile(const std::string &InputFilename) { ParseError Err; Module *Result = ParseBytecodeFile(InputFilename, Compressor::decompressToNewBuffer); if (!Result && !(Result = ParseAssemblyFile(InputFilename,&Err))) { std::cerr << "bugpoint: " << Err.getMessage() << "\n"; Result = 0; } return Result; } // This method takes the specified list of LLVM input files, attempts to load // them, either as assembly or bytecode, then link them together. It returns // true on failure (if, for example, an input bytecode file could not be // parsed), and false on success. // bool BugDriver::addSources(const std::vector &Filenames) { assert(Program == 0 && "Cannot call addSources multiple times!"); assert(!Filenames.empty() && "Must specify at least on input filename!"); try { // Load the first input file. Program = ParseInputFile(Filenames[0]); if (Program == 0) return true; if (!run_as_child) std::cout << "Read input file : '" << Filenames[0] << "'\n"; for (unsigned i = 1, e = Filenames.size(); i != e; ++i) { std::auto_ptr M(ParseInputFile(Filenames[i])); if (M.get() == 0) return true; if (!run_as_child) std::cout << "Linking in input file: '" << Filenames[i] << "'\n"; std::string ErrorMessage; if (Linker::LinkModules(Program, M.get(), &ErrorMessage)) { std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': " << ErrorMessage << '\n'; return true; } } } catch (const std::string &Error) { std::cerr << ToolName << ": error reading input '" << Error << "'\n"; return true; } if (!run_as_child) std::cout << "*** All input ok\n"; // All input files read successfully! return false; } /// run - The top level method that is invoked after all of the instance /// variables are set up from command line arguments. /// bool BugDriver::run() { // The first thing to do is determine if we're running as a child. If we are, // then what to do is very narrow. This form of invocation is only called // from the runPasses method to actually run those passes in a child process. if (run_as_child) { // Execute the passes return runPassesAsChild(PassesToRun); } if (run_find_bugs) { // Rearrange the passes and apply them to the program. Repeat this process // until the user kills the program or we find a bug. return runManyPasses(PassesToRun); } // If we're not running as a child, the first thing that we must do is // determine what the problem is. Does the optimization series crash the // compiler, or does it produce illegal code? We make the top-level // decision by trying to run all of the passes on the the input program, // which should generate a bytecode file. If it does generate a bytecode // file, then we know the compiler didn't crash, so try to diagnose a // miscompilation. if (!PassesToRun.empty()) { std::cout << "Running selected passes on program to test for crash: "; if (runPasses(PassesToRun)) return debugOptimizerCrash(); } // Set up the execution environment, selecting a method to run LLVM bytecode. if (initializeExecutionEnvironment()) return true; // Test to see if we have a code generator crash. std::cout << "Running the code generator to test for a crash: "; try { compileProgram(Program); std::cout << '\n'; } catch (ToolExecutionError &TEE) { std::cout << TEE.what(); return debugCodeGeneratorCrash(); } // Run the raw input to see where we are coming from. If a reference output // was specified, make sure that the raw output matches it. If not, it's a // problem in the front-end or the code generator. // bool CreatedOutput = false; if (ReferenceOutputFile.empty()) { std::cout << "Generating reference output from raw program: "; if(!createReferenceFile(Program)){ return debugCodeGeneratorCrash(); } CreatedOutput = true; } // Make sure the reference output file gets deleted on exit from this // function, if appropriate. sys::Path ROF(ReferenceOutputFile); FileRemover RemoverInstance(ROF, CreatedOutput); // Diff the output of the raw program against the reference output. If it // matches, then we assume there is a miscompilation bug and try to // diagnose it. std::cout << "*** Checking the code generator...\n"; try { if (!diffProgram()) { std::cout << "\n*** Debugging miscompilation!\n"; return debugMiscompilation(); } } catch (ToolExecutionError &TEE) { std::cerr << TEE.what(); return debugCodeGeneratorCrash(); } std::cout << "\n*** Input program does not match reference diff!\n"; std::cout << "Debugging code generator problem!\n"; try { return debugCodeGenerator(); } catch (ToolExecutionError &TEE) { std::cerr << TEE.what(); return debugCodeGeneratorCrash(); } } void llvm::PrintFunctionList(const std::vector &Funcs) { unsigned NumPrint = Funcs.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0; i != NumPrint; ++i) std::cout << " " << Funcs[i]->getName(); if (NumPrint < Funcs.size()) std::cout << "... <" << Funcs.size() << " total>"; std::cout << std::flush; } void llvm::PrintGlobalVariableList(const std::vector &GVs) { unsigned NumPrint = GVs.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0; i != NumPrint; ++i) std::cout << " " << GVs[i]->getName(); if (NumPrint < GVs.size()) std::cout << "... <" << GVs.size() << " total>"; std::cout << std::flush; }