//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the SparcV8 instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// class InstV8 : Instruction { // SparcV8 instruction baseline field bits<32> Inst; let Namespace = "V8"; bits<2> op; let Inst{31-30} = op; // Top two bits are the 'op' field // Bit attributes specific to SparcV8 instructions bit isPasi = 0; // Does this instruction affect an alternate addr space? bit isPrivileged = 0; // Is this a privileged instruction? } include "SparcV8InstrInfo_F2.td" include "SparcV8InstrInfo_F3.td" //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. def PHI : InstV8 { let Name = "PHI"; } def ADJCALLSTACKDOWN : InstV8 { let Name = "ADJCALLSTACKDOWN"; } def ADJCALLSTACKUP : InstV8 { let Name = "ADJCALLSTACKUP"; } // Section A.3 - Synthetic Instructions, p. 85 // special cases of JMPL: let isReturn = 1, isTerminator = 1, simm13 = 8 in def RET : F3_2<2, 0b111000, "ret">; let isReturn = 1, isTerminator = 1, simm13 = 8 in def RETL: F3_2<2, 0b111000, "retl">; // CMP is a special case of SUBCC where destination is ignored, by setting it to // %g0 (hardwired zero). // FIXME: should keep track of the fact that it defs the integer condition codes let rd = 0 in def CMPri: F3_2<2, 0b010100, "cmp">; // Section B.1 - Load Integer Instructions, p. 90 def LDSBmr: F3_2<3, 0b001001, "ldsb">; def LDSHmr: F3_2<3, 0b001010, "ldsh">; def LDUBmr: F3_2<3, 0b000001, "ldub">; def LDUHmr: F3_2<3, 0b000010, "lduh">; def LDmr : F3_2<3, 0b000000, "ld">; def LDDmr : F3_2<3, 0b000011, "ldd">; // Section B.4 - Store Integer Instructions, p. 95 def STBrm : F3_2<3, 0b000101, "stb">; def STHrm : F3_2<3, 0b000110, "sth">; def STrm : F3_2<3, 0b000100, "st">; def STDrm : F3_2<3, 0b000111, "std">; // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, "sethi">; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) let rd = 0, imm = 0 in def NOP : F2_1<0b100, "nop">; // Section B.11 - Logical Instructions, p. 106 def ANDrr : F3_1<2, 0b000001, "and">; def ANDri : F3_2<2, 0b000001, "and">; def ORrr : F3_1<2, 0b000010, "or">; def ORri : F3_2<2, 0b000010, "or">; def XORrr : F3_1<2, 0b000011, "xor">; def XORri : F3_2<2, 0b000011, "xor">; // Section B.12 - Shift Instructions, p. 107 def SLLrr : F3_1<2, 0b100101, "sll">; def SLLri : F3_2<2, 0b100101, "sll">; def SRLrr : F3_1<2, 0b100110, "srl">; def SRLri : F3_2<2, 0b100110, "srl">; def SRArr : F3_1<2, 0b100111, "sra">; def SRAri : F3_2<2, 0b100111, "sra">; // Section B.13 - Add Instructions, p. 108 def ADDrr : F3_1<2, 0b000000, "add">; def ADDri : F3_2<2, 0b000000, "add">; // Section B.15 - Subtract Instructions, p. 110 def SUBrr : F3_1<2, 0b000100, "sub">; def SUBCCrr : F3_1<2, 0b010100, "subcc">; def SUBCCri : F3_2<2, 0b010100, "subcc">; // Section B.18 - Multiply Instructions, p. 113 def UMULrr : F3_1<2, 0b001010, "umul">; def SMULrr : F3_1<2, 0b001011, "smul">; // Section B.19 - Divide Instructions, p. 115 def UDIVrr : F3_1<2, 0b001110, "udiv">; def UDIVri : F3_2<2, 0b001110, "udiv">; def SDIVrr : F3_1<2, 0b001111, "sdiv">; def SDIVri : F3_2<2, 0b001111, "sdiv">; def UDIVCCrr : F3_1<2, 0b011110, "udivcc">; def UDIVCCri : F3_2<2, 0b011110, "udivcc">; def SDIVCCrr : F3_1<2, 0b011111, "sdivcc">; def SDIVCCri : F3_2<2, 0b011111, "sdivcc">; // Section B.20 - SAVE and RESTORE, p. 117 def SAVErr : F3_1<2, 0b111100, "save">; // save r, r, r def SAVEri : F3_2<2, 0b111100, "save">; // save r, i, r def RESTORErr : F3_1<2, 0b111101, "restore">; // restore r, r, r def RESTOREri : F3_2<2, 0b111101, "restore">; // restore r, i, r // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 def BA : F2_2<0b1000, 0b010, "ba">; def BN : F2_2<0b0000, 0b010, "bn">; def BNE : F2_2<0b1001, 0b010, "bne">; def BE : F2_2<0b0001, 0b010, "be">; def BG : F2_2<0b1010, 0b010, "bg">; def BLE : F2_2<0b0010, 0b010, "ble">; def BGE : F2_2<0b1011, 0b010, "bge">; def BL : F2_2<0b0011, 0b010, "bl">; def BGU : F2_2<0b1100, 0b010, "bgu">; def BLEU : F2_2<0b0100, 0b010, "bleu">; def BCC : F2_2<0b1101, 0b010, "bcc">; def BCS : F2_2<0b0101, 0b010, "bcs">; // Section B.24 - Call and Link Instruction, p. 125 // This is the only Format 1 instruction def CALL : InstV8 { bits<30> disp; let op = 1; let Inst{29-0} = disp; let Name = "call"; let isCall = 1; } // Section B.25 - Jump and Link, p. 126 def JMPLrr : F3_1<2, 0b111000, "jmpl">; // jmpl [rs1+rs2], rd def JMPLri : F3_2<2, 0b111000, "jmpl">; // jmpl [rs1+imm], rd // Section B.29 - Write State Register Instructions def WRrr : F3_1<2, 0b110000, "wr">; // wr rs1, rs2, rd def WRri : F3_2<2, 0b110000, "wr">; // wr rs1, imm, rd