//===-- Verifier.cpp - Implement the Module Verifier -----------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. // // Note that this does not provide full `Java style' security and verifications, // instead it just tries to ensure that code is well-formed. // // * Both of a binary operator's parameters are of the same type // * Verify that the indices of mem access instructions match other operands // * Verify that arithmetic and other things are only performed on first-class // types. Verify that shifts & logicals only happen on integrals f.e. // * All of the constants in a switch statement are of the correct type // * The code is in valid SSA form // * It should be illegal to put a label into any other type (like a structure) // or to return one. [except constant arrays!] // * Only phi nodes can be self referential: 'add i32 %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must be the first thing in a basic block, all grouped together // * PHI nodes must have at least one entry // * All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors // * All Instructions must be embedded into a basic block // * Functions cannot take a void-typed parameter // * Verify that a function's argument list agrees with it's declared type. // * It is illegal to specify a name for a void value. // * It is illegal to have a internal global value with no initializer // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // * Function call argument types match the function prototype // * A landing pad is defined by a landingpad instruction, and can be jumped to // only by the unwind edge of an invoke instruction. // * A landingpad instruction must be the first non-PHI instruction in the // block. // * All landingpad instructions must use the same personality function with // the same function. // * All other things that are tested by asserts spread about the code... // //===----------------------------------------------------------------------===// #include "llvm/IR/Verifier.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; static cl::opt VerifyDebugInfo("verify-debug-info", cl::init(false)); namespace { struct VerifierSupport { raw_ostream &OS; const Module *M; /// \brief Track the brokenness of the module while recursively visiting. bool Broken; explicit VerifierSupport(raw_ostream &OS) : OS(OS), M(nullptr), Broken(false) {} void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { OS << *V << '\n'; } else { V->printAsOperand(OS, true, M); OS << '\n'; } } void WriteType(Type *T) { if (!T) return; OS << ' ' << *T; } void WriteComdat(const Comdat *C) { if (!C) return; OS << *C; } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. void CheckFailed(const Twine &Message, const Value *V1 = nullptr, const Value *V2 = nullptr, const Value *V3 = nullptr, const Value *V4 = nullptr) { OS << Message.str() << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); WriteValue(V4); Broken = true; } void CheckFailed(const Twine &Message, const Value *V1, Type *T2, const Value *V3 = nullptr) { OS << Message.str() << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); Broken = true; } void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr, Type *T3 = nullptr) { OS << Message.str() << "\n"; WriteType(T1); WriteType(T2); WriteType(T3); Broken = true; } void CheckFailed(const Twine &Message, const Comdat *C) { OS << Message.str() << "\n"; WriteComdat(C); Broken = true; } }; class Verifier : public InstVisitor, VerifierSupport { friend class InstVisitor; LLVMContext *Context; const DataLayout *DL; DominatorTree DT; /// \brief When verifying a basic block, keep track of all of the /// instructions we have seen so far. /// /// This allows us to do efficient dominance checks for the case when an /// instruction has an operand that is an instruction in the same block. SmallPtrSet InstsInThisBlock; /// \brief Keep track of the metadata nodes that have been checked already. SmallPtrSet MDNodes; /// \brief The personality function referenced by the LandingPadInsts. /// All LandingPadInsts within the same function must use the same /// personality function. const Value *PersonalityFn; public: explicit Verifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS), Context(nullptr), DL(nullptr), PersonalityFn(nullptr) {} bool verify(const Function &F) { M = F.getParent(); Context = &M->getContext(); // First ensure the function is well-enough formed to compute dominance // information. if (F.empty()) { OS << "Function '" << F.getName() << "' does not contain an entry block!\n"; return false; } for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) { if (I->empty() || !I->back().isTerminator()) { OS << "Basic Block in function '" << F.getName() << "' does not have terminator!\n"; I->printAsOperand(OS, true); OS << "\n"; return false; } } // Now directly compute a dominance tree. We don't rely on the pass // manager to provide this as it isolates us from a potentially // out-of-date dominator tree and makes it significantly more complex to // run this code outside of a pass manager. // FIXME: It's really gross that we have to cast away constness here. DT.recalculate(const_cast(F)); Broken = false; // FIXME: We strip const here because the inst visitor strips const. visit(const_cast(F)); InstsInThisBlock.clear(); PersonalityFn = nullptr; return !Broken; } bool verify(const Module &M) { this->M = &M; Context = &M.getContext(); Broken = false; // Scan through, checking all of the external function's linkage now... for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { visitGlobalValue(*I); // Check to make sure function prototypes are okay. if (I->isDeclaration()) visitFunction(*I); } for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) visitGlobalVariable(*I); for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) visitGlobalAlias(*I); for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), E = M.named_metadata_end(); I != E; ++I) visitNamedMDNode(*I); for (const StringMapEntry &SMEC : M.getComdatSymbolTable()) visitComdat(SMEC.getValue()); visitModuleFlags(M); visitModuleIdents(M); return !Broken; } private: // Verification methods... void visitGlobalValue(const GlobalValue &GV); void visitGlobalVariable(const GlobalVariable &GV); void visitGlobalAlias(const GlobalAlias &GA); void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); void visitAliaseeSubExpr(SmallPtrSetImpl &Visited, const GlobalAlias &A, const Constant &C); void visitNamedMDNode(const NamedMDNode &NMD); void visitMDNode(MDNode &MD, Function *F); void visitComdat(const Comdat &C); void visitModuleIdents(const Module &M); void visitModuleFlags(const Module &M); void visitModuleFlag(const MDNode *Op, DenseMap &SeenIDs, SmallVectorImpl &Requirements); void visitFunction(const Function &F); void visitBasicBlock(BasicBlock &BB); // InstVisitor overrides... using InstVisitor::visit; void visit(Instruction &I); void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); void visitFPTruncInst(FPTruncInst &I); void visitFPExtInst(FPExtInst &I); void visitFPToUIInst(FPToUIInst &I); void visitFPToSIInst(FPToSIInst &I); void visitUIToFPInst(UIToFPInst &I); void visitSIToFPInst(SIToFPInst &I); void visitIntToPtrInst(IntToPtrInst &I); void visitPtrToIntInst(PtrToIntInst &I); void visitBitCastInst(BitCastInst &I); void visitAddrSpaceCastInst(AddrSpaceCastInst &I); void visitPHINode(PHINode &PN); void visitBinaryOperator(BinaryOperator &B); void visitICmpInst(ICmpInst &IC); void visitFCmpInst(FCmpInst &FC); void visitExtractElementInst(ExtractElementInst &EI); void visitInsertElementInst(InsertElementInst &EI); void visitShuffleVectorInst(ShuffleVectorInst &EI); void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } void visitCallInst(CallInst &CI); void visitInvokeInst(InvokeInst &II); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void verifyDominatesUse(Instruction &I, unsigned i); void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); void visitBranchInst(BranchInst &BI); void visitReturnInst(ReturnInst &RI); void visitSwitchInst(SwitchInst &SI); void visitIndirectBrInst(IndirectBrInst &BI); void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); void visitAtomicRMWInst(AtomicRMWInst &RMWI); void visitFenceInst(FenceInst &FI); void visitAllocaInst(AllocaInst &AI); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitLandingPadInst(LandingPadInst &LPI); void VerifyCallSite(CallSite CS); void verifyMustTailCall(CallInst &CI); bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, unsigned ArgNo, std::string &Suffix); bool VerifyIntrinsicType(Type *Ty, ArrayRef &Infos, SmallVectorImpl &ArgTys); bool VerifyIntrinsicIsVarArg(bool isVarArg, ArrayRef &Infos); bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, const Value *V); void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, bool isReturnValue, const Value *V); void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, const Value *V); void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy); void VerifyConstantExprBitcastType(const ConstantExpr *CE); }; class DebugInfoVerifier : public VerifierSupport { public: explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {} bool verify(const Module &M) { this->M = &M; verifyDebugInfo(); return !Broken; } private: void verifyDebugInfo(); void processInstructions(DebugInfoFinder &Finder); void processCallInst(DebugInfoFinder &Finder, const CallInst &CI); }; } // End anonymous namespace // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) #define Assert3(C, M, V1, V2, V3) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) void Verifier::visit(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) Assert1(I.getOperand(i) != nullptr, "Operand is null", &I); InstVisitor::visit(I); } void Verifier::visitGlobalValue(const GlobalValue &GV) { Assert1(!GV.isDeclaration() || GV.isMaterializable() || GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), "Global is external, but doesn't have external or weak linkage!", &GV); Assert1(GV.getAlignment() <= Value::MaximumAlignment, "huge alignment values are unsupported", &GV); Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { const GlobalVariable *GVar = dyn_cast(&GV); Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), "Only global arrays can have appending linkage!", GVar); } } void Verifier::visitGlobalVariable(const GlobalVariable &GV) { if (GV.hasInitializer()) { Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), "Global variable initializer type does not match global " "variable type!", &GV); // If the global has common linkage, it must have a zero initializer and // cannot be constant. if (GV.hasCommonLinkage()) { Assert1(GV.getInitializer()->isNullValue(), "'common' global must have a zero initializer!", &GV); Assert1(!GV.isConstant(), "'common' global may not be marked constant!", &GV); Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); } } else { Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), "invalid linkage type for global declaration", &GV); } if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || GV.getName() == "llvm.global_dtors")) { Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), "invalid linkage for intrinsic global variable", &GV); // Don't worry about emitting an error for it not being an array, // visitGlobalValue will complain on appending non-array. if (ArrayType *ATy = dyn_cast(GV.getType()->getElementType())) { StructType *STy = dyn_cast(ATy->getElementType()); PointerType *FuncPtrTy = FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); // FIXME: Reject the 2-field form in LLVM 4.0. Assert1(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && STy->getTypeAtIndex(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy, "wrong type for intrinsic global variable", &GV); if (STy->getNumElements() == 3) { Type *ETy = STy->getTypeAtIndex(2); Assert1(ETy->isPointerTy() && cast(ETy)->getElementType()->isIntegerTy(8), "wrong type for intrinsic global variable", &GV); } } } if (GV.hasName() && (GV.getName() == "llvm.used" || GV.getName() == "llvm.compiler.used")) { Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), "invalid linkage for intrinsic global variable", &GV); Type *GVType = GV.getType()->getElementType(); if (ArrayType *ATy = dyn_cast(GVType)) { PointerType *PTy = dyn_cast(ATy->getElementType()); Assert1(PTy, "wrong type for intrinsic global variable", &GV); if (GV.hasInitializer()) { const Constant *Init = GV.getInitializer(); const ConstantArray *InitArray = dyn_cast(Init); Assert1(InitArray, "wrong initalizer for intrinsic global variable", Init); for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); Assert1( isa(V) || isa(V) || isa(V), "invalid llvm.used member", V); Assert1(V->hasName(), "members of llvm.used must be named", V); } } } } Assert1(!GV.hasDLLImportStorageClass() || (GV.isDeclaration() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage(), "Global is marked as dllimport, but not external", &GV); if (!GV.hasInitializer()) { visitGlobalValue(GV); return; } // Walk any aggregate initializers looking for bitcasts between address spaces SmallPtrSet Visited; SmallVector WorkStack; WorkStack.push_back(cast(GV.getInitializer())); while (!WorkStack.empty()) { const Value *V = WorkStack.pop_back_val(); if (!Visited.insert(V)) continue; if (const User *U = dyn_cast(V)) { for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I) WorkStack.push_back(U->getOperand(I)); } if (const ConstantExpr *CE = dyn_cast(V)) { VerifyConstantExprBitcastType(CE); if (Broken) return; } } visitGlobalValue(GV); } void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { SmallPtrSet Visited; Visited.insert(&GA); visitAliaseeSubExpr(Visited, GA, C); } void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl &Visited, const GlobalAlias &GA, const Constant &C) { if (const auto *GV = dyn_cast(&C)) { Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA); if (const auto *GA2 = dyn_cast(GV)) { Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA); Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", &GA); } else { // Only continue verifying subexpressions of GlobalAliases. // Do not recurse into global initializers. return; } } if (const auto *CE = dyn_cast(&C)) VerifyConstantExprBitcastType(CE); for (const Use &U : C.operands()) { Value *V = &*U; if (const auto *GA2 = dyn_cast(V)) visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); else if (const auto *C2 = dyn_cast(V)) visitAliaseeSubExpr(Visited, GA, *C2); } } void Verifier::visitGlobalAlias(const GlobalAlias &GA) { Assert1(!GA.getName().empty(), "Alias name cannot be empty!", &GA); Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()), "Alias should have private, internal, linkonce, weak, linkonce_odr, " "weak_odr, or external linkage!", &GA); const Constant *Aliasee = GA.getAliasee(); Assert1(Aliasee, "Aliasee cannot be NULL!", &GA); Assert1(GA.getType() == Aliasee->getType(), "Alias and aliasee types should match!", &GA); Assert1(isa(Aliasee) || isa(Aliasee), "Aliasee should be either GlobalValue or ConstantExpr", &GA); visitAliaseeSubExpr(GA, *Aliasee); visitGlobalValue(GA); } void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { MDNode *MD = NMD.getOperand(i); if (!MD) continue; Assert1(!MD->isFunctionLocal(), "Named metadata operand cannot be function local!", MD); visitMDNode(*MD, nullptr); } } void Verifier::visitMDNode(MDNode &MD, Function *F) { // Only visit each node once. Metadata can be mutually recursive, so this // avoids infinite recursion here, as well as being an optimization. if (!MDNodes.insert(&MD)) return; for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { Value *Op = MD.getOperand(i); if (!Op) continue; if (isa(Op) || isa(Op)) continue; if (MDNode *N = dyn_cast(Op)) { Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), "Global metadata operand cannot be function local!", &MD, N); visitMDNode(*N, F); continue; } Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); // If this was an instruction, bb, or argument, verify that it is in the // function that we expect. Function *ActualF = nullptr; if (Instruction *I = dyn_cast(Op)) ActualF = I->getParent()->getParent(); else if (BasicBlock *BB = dyn_cast(Op)) ActualF = BB->getParent(); else if (Argument *A = dyn_cast(Op)) ActualF = A->getParent(); assert(ActualF && "Unimplemented function local metadata case!"); Assert2(ActualF == F, "function-local metadata used in wrong function", &MD, Op); } } void Verifier::visitComdat(const Comdat &C) { // All Comdat::SelectionKind values other than Comdat::Any require a // GlobalValue with the same name as the Comdat. const GlobalValue *GV = M->getNamedValue(C.getName()); if (C.getSelectionKind() != Comdat::Any) Assert1(GV, "comdat selection kind requires a global value with the same name", &C); // The Module is invalid if the GlobalValue has private linkage. Entities // with private linkage don't have entries in the symbol table. if (GV) Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage", GV); } void Verifier::visitModuleIdents(const Module &M) { const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); if (!Idents) return; // llvm.ident takes a list of metadata entry. Each entry has only one string. // Scan each llvm.ident entry and make sure that this requirement is met. for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { const MDNode *N = Idents->getOperand(i); Assert1(N->getNumOperands() == 1, "incorrect number of operands in llvm.ident metadata", N); Assert1(isa(N->getOperand(0)), ("invalid value for llvm.ident metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); } } void Verifier::visitModuleFlags(const Module &M) { const NamedMDNode *Flags = M.getModuleFlagsMetadata(); if (!Flags) return; // Scan each flag, and track the flags and requirements. DenseMap SeenIDs; SmallVector Requirements; for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); } // Validate that the requirements in the module are valid. for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { const MDNode *Requirement = Requirements[I]; const MDString *Flag = cast(Requirement->getOperand(0)); const Value *ReqValue = Requirement->getOperand(1); const MDNode *Op = SeenIDs.lookup(Flag); if (!Op) { CheckFailed("invalid requirement on flag, flag is not present in module", Flag); continue; } if (Op->getOperand(2) != ReqValue) { CheckFailed(("invalid requirement on flag, " "flag does not have the required value"), Flag); continue; } } } void Verifier::visitModuleFlag(const MDNode *Op, DenseMap &SeenIDs, SmallVectorImpl &Requirements) { // Each module flag should have three arguments, the merge behavior (a // constant int), the flag ID (an MDString), and the value. Assert1(Op->getNumOperands() == 3, "incorrect number of operands in module flag", Op); ConstantInt *Behavior = dyn_cast(Op->getOperand(0)); MDString *ID = dyn_cast(Op->getOperand(1)); Assert1(Behavior, "invalid behavior operand in module flag (expected constant integer)", Op->getOperand(0)); unsigned BehaviorValue = Behavior->getZExtValue(); Assert1(ID, "invalid ID operand in module flag (expected metadata string)", Op->getOperand(1)); // Sanity check the values for behaviors with additional requirements. switch (BehaviorValue) { default: Assert1(false, "invalid behavior operand in module flag (unexpected constant)", Op->getOperand(0)); break; case Module::Error: case Module::Warning: case Module::Override: // These behavior types accept any value. break; case Module::Require: { // The value should itself be an MDNode with two operands, a flag ID (an // MDString), and a value. MDNode *Value = dyn_cast(Op->getOperand(2)); Assert1(Value && Value->getNumOperands() == 2, "invalid value for 'require' module flag (expected metadata pair)", Op->getOperand(2)); Assert1(isa(Value->getOperand(0)), ("invalid value for 'require' module flag " "(first value operand should be a string)"), Value->getOperand(0)); // Append it to the list of requirements, to check once all module flags are // scanned. Requirements.push_back(Value); break; } case Module::Append: case Module::AppendUnique: { // These behavior types require the operand be an MDNode. Assert1(isa(Op->getOperand(2)), "invalid value for 'append'-type module flag " "(expected a metadata node)", Op->getOperand(2)); break; } } // Unless this is a "requires" flag, check the ID is unique. if (BehaviorValue != Module::Require) { bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; Assert1(Inserted, "module flag identifiers must be unique (or of 'require' type)", ID); } } void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, const Value *V) { unsigned Slot = ~0U; for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) if (Attrs.getSlotIndex(I) == Idx) { Slot = I; break; } assert(Slot != ~0U && "Attribute set inconsistency!"); for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); I != E; ++I) { if (I->isStringAttribute()) continue; if (I->getKindAsEnum() == Attribute::NoReturn || I->getKindAsEnum() == Attribute::NoUnwind || I->getKindAsEnum() == Attribute::NoInline || I->getKindAsEnum() == Attribute::AlwaysInline || I->getKindAsEnum() == Attribute::OptimizeForSize || I->getKindAsEnum() == Attribute::StackProtect || I->getKindAsEnum() == Attribute::StackProtectReq || I->getKindAsEnum() == Attribute::StackProtectStrong || I->getKindAsEnum() == Attribute::NoRedZone || I->getKindAsEnum() == Attribute::NoImplicitFloat || I->getKindAsEnum() == Attribute::Naked || I->getKindAsEnum() == Attribute::InlineHint || I->getKindAsEnum() == Attribute::StackAlignment || I->getKindAsEnum() == Attribute::UWTable || I->getKindAsEnum() == Attribute::NonLazyBind || I->getKindAsEnum() == Attribute::ReturnsTwice || I->getKindAsEnum() == Attribute::SanitizeAddress || I->getKindAsEnum() == Attribute::SanitizeThread || I->getKindAsEnum() == Attribute::SanitizeMemory || I->getKindAsEnum() == Attribute::MinSize || I->getKindAsEnum() == Attribute::NoDuplicate || I->getKindAsEnum() == Attribute::Builtin || I->getKindAsEnum() == Attribute::NoBuiltin || I->getKindAsEnum() == Attribute::Cold || I->getKindAsEnum() == Attribute::OptimizeNone || I->getKindAsEnum() == Attribute::JumpTable) { if (!isFunction) { CheckFailed("Attribute '" + I->getAsString() + "' only applies to functions!", V); return; } } else if (I->getKindAsEnum() == Attribute::ReadOnly || I->getKindAsEnum() == Attribute::ReadNone) { if (Idx == 0) { CheckFailed("Attribute '" + I->getAsString() + "' does not apply to function returns"); return; } } else if (isFunction) { CheckFailed("Attribute '" + I->getAsString() + "' does not apply to functions!", V); return; } } } // VerifyParameterAttrs - Check the given attributes for an argument or return // value of the specified type. The value V is printed in error messages. void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, bool isReturnValue, const Value *V) { if (!Attrs.hasAttributes(Idx)) return; VerifyAttributeTypes(Attrs, Idx, false, V); if (isReturnValue) Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && !Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute::InAlloca), "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " "'returned' do not apply to return values!", V); // Check for mutually incompatible attributes. Only inreg is compatible with // sret. unsigned AttrCount = 0; AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || Attrs.hasAttribute(Idx, Attribute::InReg); AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " "and 'sret' are incompatible!", V); Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " "'inalloca and readonly' are incompatible!", V); Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " "'sret and returned' are incompatible!", V); Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " "'zeroext and signext' are incompatible!", V); Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " "'readnone and readonly' are incompatible!", V); Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " "'noinline and alwaysinline' are incompatible!", V); Assert1(!AttrBuilder(Attrs, Idx). hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), "Wrong types for attribute: " + AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); if (PointerType *PTy = dyn_cast(Ty)) { if (!PTy->getElementType()->isSized()) { Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && !Attrs.hasAttribute(Idx, Attribute::InAlloca), "Attributes 'byval' and 'inalloca' do not support unsized types!", V); } } else { Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), "Attribute 'byval' only applies to parameters with pointer type!", V); } } // VerifyFunctionAttrs - Check parameter attributes against a function type. // The value V is printed in error messages. void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, const Value *V) { if (Attrs.isEmpty()) return; bool SawNest = false; bool SawReturned = false; bool SawSRet = false; for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { unsigned Idx = Attrs.getSlotIndex(i); Type *Ty; if (Idx == 0) Ty = FT->getReturnType(); else if (Idx-1 < FT->getNumParams()) Ty = FT->getParamType(Idx-1); else break; // VarArgs attributes, verified elsewhere. VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); if (Idx == 0) continue; if (Attrs.hasAttribute(Idx, Attribute::Nest)) { Assert1(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { Assert1(!SawReturned, "More than one parameter has attribute returned!", V); Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " "argument and return types for 'returned' attribute", V); SawReturned = true; } if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V); Assert1(Idx == 1 || Idx == 2, "Attribute 'sret' is not on first or second parameter!", V); SawSRet = true; } if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { Assert1(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", V); } } if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) return; VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), "Attributes 'readnone and readonly' are incompatible!", V); Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AlwaysInline)), "Attributes 'noinline and alwaysinline' are incompatible!", V); if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeNone)) { Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), "Attribute 'optnone' requires 'noinline'!", V); Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize), "Attributes 'optsize and optnone' are incompatible!", V); Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), "Attributes 'minsize and optnone' are incompatible!", V); } if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::JumpTable)) { const GlobalValue *GV = cast(V); Assert1(GV->hasUnnamedAddr(), "Attribute 'jumptable' requires 'unnamed_addr'", V); } } void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) { // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(), "Bitcast requires both operands to be pointer or neither", V); Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width", V); // Disallow aggregates. Assert1(!SrcTy->isAggregateType(), "Bitcast operand must not be aggregate", V); Assert1(!DestTy->isAggregateType(), "Bitcast type must not be aggregate", V); // Without datalayout, assume all address spaces are the same size. // Don't check if both types are not pointers. // Skip casts between scalars and vectors. if (!DL || !SrcTy->isPtrOrPtrVectorTy() || !DestTy->isPtrOrPtrVectorTy() || SrcTy->isVectorTy() != DestTy->isVectorTy()) { return; } unsigned SrcAS = SrcTy->getPointerAddressSpace(); unsigned DstAS = DestTy->getPointerAddressSpace(); Assert1(SrcAS == DstAS, "Bitcasts between pointers of different address spaces is not legal." "Use AddrSpaceCast instead.", V); } void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { if (CE->getOpcode() == Instruction::BitCast) { Type *SrcTy = CE->getOperand(0)->getType(); Type *DstTy = CE->getType(); VerifyBitcastType(CE, DstTy, SrcTy); } } bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { if (Attrs.getNumSlots() == 0) return true; unsigned LastSlot = Attrs.getNumSlots() - 1; unsigned LastIndex = Attrs.getSlotIndex(LastSlot); if (LastIndex <= Params || (LastIndex == AttributeSet::FunctionIndex && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) return true; return false; } // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(const Function &F) { // Check function arguments. FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); Assert1(Context == &F.getContext(), "Function context does not match Module context!", &F); Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); Assert1(F.getReturnType()->isFirstClassType() || F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), "Functions cannot return aggregate values!", &F); Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), "Invalid struct return type!", &F); AttributeSet Attrs = F.getAttributes(); Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), "Attribute after last parameter!", &F); // Check function attributes. VerifyFunctionAttrs(FT, Attrs, &F); // On function declarations/definitions, we do not support the builtin // attribute. We do not check this in VerifyFunctionAttrs since that is // checking for Attributes that can/can not ever be on functions. Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), "Attribute 'builtin' can only be applied to a callsite.", &F); // Check that this function meets the restrictions on this calling convention. // Sometimes varargs is used for perfectly forwarding thunks, so some of these // restrictions can be lifted. switch (F.getCallingConv()) { default: case CallingConv::C: break; case CallingConv::Fast: case CallingConv::Cold: case CallingConv::Intel_OCL_BI: case CallingConv::PTX_Kernel: case CallingConv::PTX_Device: Assert1(!F.isVarArg(), "Calling convention does not support varargs or " "perfect forwarding!", &F); break; } bool isLLVMdotName = F.getName().size() >= 5 && F.getName().substr(0, 5) == "llvm."; // Check that the argument values match the function type for this function... unsigned i = 0; for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { Assert2(I->getType() == FT->getParamType(i), "Argument value does not match function argument type!", I, FT->getParamType(i)); Assert1(I->getType()->isFirstClassType(), "Function arguments must have first-class types!", I); if (!isLLVMdotName) Assert2(!I->getType()->isMetadataTy(), "Function takes metadata but isn't an intrinsic", I, &F); } if (F.isMaterializable()) { // Function has a body somewhere we can't see. } else if (F.isDeclaration()) { Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node const BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); // The address of the entry block cannot be taken, unless it is dead. if (Entry->hasAddressTaken()) { Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(), "blockaddress may not be used with the entry block!", Entry); } } // If this function is actually an intrinsic, verify that it is only used in // direct call/invokes, never having its "address taken". if (F.getIntrinsicID()) { const User *U; if (F.hasAddressTaken(&U)) Assert1(0, "Invalid user of intrinsic instruction!", U); } Assert1(!F.hasDLLImportStorageClass() || (F.isDeclaration() && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage(), "Function is marked as dllimport, but not external.", &F); } // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { InstsInThisBlock.clear(); // Ensure that basic blocks have terminators! Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); // Check constraints that this basic block imposes on all of the PHI nodes in // it. if (isa(BB.front())) { SmallVector Preds(pred_begin(&BB), pred_end(&BB)); SmallVector, 8> Values; std::sort(Preds.begin(), Preds.end()); PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { // Ensure that PHI nodes have at least one entry! Assert1(PN->getNumIncomingValues() != 0, "PHI nodes must have at least one entry. If the block is dead, " "the PHI should be removed!", PN); Assert1(PN->getNumIncomingValues() == Preds.size(), "PHINode should have one entry for each predecessor of its " "parent basic block!", PN); // Get and sort all incoming values in the PHI node... Values.clear(); Values.reserve(PN->getNumIncomingValues()); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) Values.push_back(std::make_pair(PN->getIncomingBlock(i), PN->getIncomingValue(i))); std::sort(Values.begin(), Values.end()); for (unsigned i = 0, e = Values.size(); i != e; ++i) { // Check to make sure that if there is more than one entry for a // particular basic block in this PHI node, that the incoming values are // all identical. // Assert4(i == 0 || Values[i].first != Values[i-1].first || Values[i].second == Values[i-1].second, "PHI node has multiple entries for the same basic block with " "different incoming values!", PN, Values[i].first, Values[i].second, Values[i-1].second); // Check to make sure that the predecessors and PHI node entries are // matched up. Assert3(Values[i].first == Preds[i], "PHI node entries do not match predecessors!", PN, Values[i].first, Preds[i]); } } } } void Verifier::visitTerminatorInst(TerminatorInst &I) { // Ensure that terminators only exist at the end of the basic block. Assert1(&I == I.getParent()->getTerminator(), "Terminator found in the middle of a basic block!", I.getParent()); visitInstruction(I); } void Verifier::visitBranchInst(BranchInst &BI) { if (BI.isConditional()) { Assert2(BI.getCondition()->getType()->isIntegerTy(1), "Branch condition is not 'i1' type!", &BI, BI.getCondition()); } visitTerminatorInst(BI); } void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); if (F->getReturnType()->isVoidTy()) Assert2(N == 0, "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); else Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); } void Verifier::visitSwitchInst(SwitchInst &SI) { // Check to make sure that all of the constants in the switch instruction // have the same type as the switched-on value. Type *SwitchTy = SI.getCondition()->getType(); SmallPtrSet Constants; for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { Assert1(i.getCaseValue()->getType() == SwitchTy, "Switch constants must all be same type as switch value!", &SI); Assert2(Constants.insert(i.getCaseValue()), "Duplicate integer as switch case", &SI, i.getCaseValue()); } visitTerminatorInst(SI); } void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { Assert1(BI.getAddress()->getType()->isPointerTy(), "Indirectbr operand must have pointer type!", &BI); for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) Assert1(BI.getDestination(i)->getType()->isLabelTy(), "Indirectbr destinations must all have pointer type!", &BI); visitTerminatorInst(BI); } void Verifier::visitSelectInst(SelectInst &SI) { Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), SI.getOperand(2)), "Invalid operands for select instruction!", &SI); Assert1(SI.getTrueValue()->getType() == SI.getType(), "Select values must have same type as select instruction!", &SI); visitInstruction(SI); } /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of /// a pass, if any exist, it's an error. /// void Verifier::visitUserOp1(Instruction &I) { Assert1(0, "User-defined operators should not live outside of a pass!", &I); } void Verifier::visitTruncInst(TruncInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); visitInstruction(I); } void Verifier::visitZExtInst(ZExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); visitInstruction(I); } void Verifier::visitSExtInst(SExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); visitInstruction(I); } void Verifier::visitFPTruncInst(FPTruncInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); visitInstruction(I); } void Verifier::visitFPExtInst(FPExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); visitInstruction(I); } void Verifier::visitUIToFPInst(UIToFPInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "UIToFP source and dest must both be vector or scalar", &I); Assert1(SrcTy->isIntOrIntVectorTy(), "UIToFP source must be integer or integer vector", &I); Assert1(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "UIToFP source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitSIToFPInst(SIToFPInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "SIToFP source and dest must both be vector or scalar", &I); Assert1(SrcTy->isIntOrIntVectorTy(), "SIToFP source must be integer or integer vector", &I); Assert1(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "SIToFP source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitFPToUIInst(FPToUIInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToUI source and dest must both be vector or scalar", &I); Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); Assert1(DestTy->isIntOrIntVectorTy(), "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "FPToUI source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitFPToSIInst(FPToSIInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToSI source and dest must both be vector or scalar", &I); Assert1(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); Assert1(DestTy->isIntOrIntVectorTy(), "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "FPToSI source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitPtrToIntInst(PtrToIntInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); Assert1(SrcTy->getScalarType()->isPointerTy(), "PtrToInt source must be pointer", &I); Assert1(DestTy->getScalarType()->isIntegerTy(), "PtrToInt result must be integral", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); Assert1(VSrc->getNumElements() == VDest->getNumElements(), "PtrToInt Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitIntToPtrInst(IntToPtrInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); Assert1(SrcTy->getScalarType()->isIntegerTy(), "IntToPtr source must be an integral", &I); Assert1(DestTy->getScalarType()->isPointerTy(), "IntToPtr result must be a pointer",&I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); Assert1(VSrc->getNumElements() == VDest->getNumElements(), "IntToPtr Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitBitCastInst(BitCastInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); VerifyBitcastType(&I, DestTy, SrcTy); visitInstruction(I); } void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); Assert1(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", &I); Assert1(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", &I); Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), "AddrSpaceCast must be between different address spaces", &I); if (SrcTy->isVectorTy()) Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), "AddrSpaceCast vector pointer number of elements mismatch", &I); visitInstruction(I); } /// visitPHINode - Ensure that a PHI node is well formed. /// void Verifier::visitPHINode(PHINode &PN) { // Ensure that the PHI nodes are all grouped together at the top of the block. // This can be tested by checking whether the instruction before this is // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. Assert2(&PN == &PN.getParent()->front() || isa(--BasicBlock::iterator(&PN)), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); // Check that all of the values of the PHI node have the same type as the // result, and that the incoming blocks are really basic blocks. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), "PHI node operands are not the same type as the result!", &PN); } // All other PHI node constraints are checked in the visitBasicBlock method. visitInstruction(PN); } void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); Assert1(CS.getCalledValue()->getType()->isPointerTy(), "Called function must be a pointer!", I); PointerType *FPTy = cast(CS.getCalledValue()->getType()); Assert1(FPTy->getElementType()->isFunctionTy(), "Called function is not pointer to function type!", I); FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed if (FTy->isVarArg()) Assert1(CS.arg_size() >= FTy->getNumParams(), "Called function requires more parameters than were provided!",I); else Assert1(CS.arg_size() == FTy->getNumParams(), "Incorrect number of arguments passed to called function!", I); // Verify that all arguments to the call match the function type. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), "Call parameter type does not match function signature!", CS.getArgument(i), FTy->getParamType(i), I); AttributeSet Attrs = CS.getAttributes(); Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), "Attribute after last parameter!", I); // Verify call attributes. VerifyFunctionAttrs(FTy, Attrs, I); // Conservatively check the inalloca argument. // We have a bug if we can find that there is an underlying alloca without // inalloca. if (CS.hasInAllocaArgument()) { Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); if (auto AI = dyn_cast(InAllocaArg->stripInBoundsOffsets())) Assert2(AI->isUsedWithInAlloca(), "inalloca argument for call has mismatched alloca", AI, I); } if (FTy->isVarArg()) { // FIXME? is 'nest' even legal here? bool SawNest = false; bool SawReturned = false; for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { if (Attrs.hasAttribute(Idx, Attribute::Nest)) SawNest = true; if (Attrs.hasAttribute(Idx, Attribute::Returned)) SawReturned = true; } // Check attributes on the varargs part. for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { Type *Ty = CS.getArgument(Idx-1)->getType(); VerifyParameterAttrs(Attrs, Idx, Ty, false, I); if (Attrs.hasAttribute(Idx, Attribute::Nest)) { Assert1(!SawNest, "More than one parameter has attribute nest!", I); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { Assert1(!SawReturned, "More than one parameter has attribute returned!", I); Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), "Incompatible argument and return types for 'returned' " "attribute", I); SawReturned = true; } Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), "Attribute 'sret' cannot be used for vararg call arguments!", I); if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); } } // Verify that there's no metadata unless it's a direct call to an intrinsic. if (CS.getCalledFunction() == nullptr || !CS.getCalledFunction()->getName().startswith("llvm.")) { for (FunctionType::param_iterator PI = FTy->param_begin(), PE = FTy->param_end(); PI != PE; ++PI) Assert1(!(*PI)->isMetadataTy(), "Function has metadata parameter but isn't an intrinsic", I); } visitInstruction(*I); } /// Two types are "congruent" if they are identical, or if they are both pointer /// types with different pointee types and the same address space. static bool isTypeCongruent(Type *L, Type *R) { if (L == R) return true; PointerType *PL = dyn_cast(L); PointerType *PR = dyn_cast(R); if (!PL || !PR) return false; return PL->getAddressSpace() == PR->getAddressSpace(); } static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { static const Attribute::AttrKind ABIAttrs[] = { Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, Attribute::InReg, Attribute::Returned}; AttrBuilder Copy; for (auto AK : ABIAttrs) { if (Attrs.hasAttribute(I + 1, AK)) Copy.addAttribute(AK); } if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); return Copy; } void Verifier::verifyMustTailCall(CallInst &CI) { Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); // - The caller and callee prototypes must match. Pointer types of // parameters or return types may differ in pointee type, but not // address space. Function *F = CI.getParent()->getParent(); auto GetFnTy = [](Value *V) { return cast( cast(V->getType())->getElementType()); }; FunctionType *CallerTy = GetFnTy(F); FunctionType *CalleeTy = GetFnTy(CI.getCalledValue()); Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(), "cannot guarantee tail call due to mismatched parameter counts", &CI); Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(), "cannot guarantee tail call due to mismatched varargs", &CI); Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), "cannot guarantee tail call due to mismatched return types", &CI); for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { Assert1( isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), "cannot guarantee tail call due to mismatched parameter types", &CI); } // - The calling conventions of the caller and callee must match. Assert1(F->getCallingConv() == CI.getCallingConv(), "cannot guarantee tail call due to mismatched calling conv", &CI); // - All ABI-impacting function attributes, such as sret, byval, inreg, // returned, and inalloca, must match. AttributeSet CallerAttrs = F->getAttributes(); AttributeSet CalleeAttrs = CI.getAttributes(); for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); Assert2(CallerABIAttrs == CalleeABIAttrs, "cannot guarantee tail call due to mismatched ABI impacting " "function attributes", &CI, CI.getOperand(I)); } // - The call must immediately precede a :ref:`ret ` instruction, // or a pointer bitcast followed by a ret instruction. // - The ret instruction must return the (possibly bitcasted) value // produced by the call or void. Value *RetVal = &CI; Instruction *Next = CI.getNextNode(); // Handle the optional bitcast. if (BitCastInst *BI = dyn_cast_or_null(Next)) { Assert1(BI->getOperand(0) == RetVal, "bitcast following musttail call must use the call", BI); RetVal = BI; Next = BI->getNextNode(); } // Check the return. ReturnInst *Ret = dyn_cast_or_null(Next); Assert1(Ret, "musttail call must be precede a ret with an optional bitcast", &CI); Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, "musttail call result must be returned", Ret); } void Verifier::visitCallInst(CallInst &CI) { VerifyCallSite(&CI); if (CI.isMustTailCall()) verifyMustTailCall(CI); if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicFunctionCall(ID, CI); } void Verifier::visitInvokeInst(InvokeInst &II) { VerifyCallSite(&II); // Verify that there is a landingpad instruction as the first non-PHI // instruction of the 'unwind' destination. Assert1(II.getUnwindDest()->isLandingPad(), "The unwind destination does not have a landingpad instruction!",&II); visitTerminatorInst(II); } /// visitBinaryOperator - Check that both arguments to the binary operator are /// of the same type! /// void Verifier::visitBinaryOperator(BinaryOperator &B) { Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { // Check that integer arithmetic operators are only used with // integral operands. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: Assert1(B.getType()->isIntOrIntVectorTy(), "Integer arithmetic operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Integer arithmetic operators must have same type " "for operands and result!", &B); break; // Check that floating-point arithmetic operators are only used with // floating-point operands. case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: Assert1(B.getType()->isFPOrFPVectorTy(), "Floating-point arithmetic operators only work with " "floating-point types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Floating-point arithmetic operators must have same type " "for operands and result!", &B); break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: Assert1(B.getType()->isIntOrIntVectorTy(), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", &B); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: Assert1(B.getType()->isIntOrIntVectorTy(), "Shifts only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); break; default: llvm_unreachable("Unknown BinaryOperator opcode!"); } visitInstruction(B); } void Verifier::visitICmpInst(ICmpInst &IC) { // Check that the operands are the same type Type *Op0Ty = IC.getOperand(0)->getType(); Type *Op1Ty = IC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), "Invalid operand types for ICmp instruction", &IC); // Check that the predicate is valid. Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, "Invalid predicate in ICmp instruction!", &IC); visitInstruction(IC); } void Verifier::visitFCmpInst(FCmpInst &FC) { // Check that the operands are the same type Type *Op0Ty = FC.getOperand(0)->getType(); Type *Op1Ty = FC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type Assert1(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", &FC); // Check that the predicate is valid. Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, "Invalid predicate in FCmp instruction!", &FC); visitInstruction(FC); } void Verifier::visitExtractElementInst(ExtractElementInst &EI) { Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), "Invalid extractelement operands!", &EI); visitInstruction(EI); } void Verifier::visitInsertElementInst(InsertElementInst &IE) { Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), IE.getOperand(2)), "Invalid insertelement operands!", &IE); visitInstruction(IE); } void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), SV.getOperand(2)), "Invalid shufflevector operands!", &SV); visitInstruction(SV); } void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); Assert1(isa(TargetTy), "GEP base pointer is not a vector or a vector of pointers", &GEP); Assert1(cast(TargetTy)->getElementType()->isSized(), "GEP into unsized type!", &GEP); Assert1(GEP.getPointerOperandType()->isVectorTy() == GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", &GEP); SmallVector Idxs(GEP.idx_begin(), GEP.idx_end()); Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); Assert2(GEP.getType()->getScalarType()->isPointerTy() && cast(GEP.getType()->getScalarType())->getElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); if (GEP.getPointerOperandType()->isVectorTy()) { // Additional checks for vector GEPs. unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); Assert1(GepWidth == GEP.getType()->getVectorNumElements(), "Vector GEP result width doesn't match operand's", &GEP); for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { Type *IndexTy = Idxs[i]->getType(); Assert1(IndexTy->isVectorTy(), "Vector GEP must have vector indices!", &GEP); unsigned IndexWidth = IndexTy->getVectorNumElements(); Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); } } visitInstruction(GEP); } static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); } void Verifier::visitLoadInst(LoadInst &LI) { PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); Assert1(PTy, "Load operand must be a pointer.", &LI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); Assert1(LI.getAlignment() <= Value::MaximumAlignment, "huge alignment values are unsupported", &LI); if (LI.isAtomic()) { Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, "Load cannot have Release ordering", &LI); Assert1(LI.getAlignment() != 0, "Atomic load must specify explicit alignment", &LI); if (!ElTy->isPointerTy()) { Assert2(ElTy->isIntegerTy(), "atomic load operand must have integer type!", &LI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); Assert2(Size >= 8 && !(Size & (Size - 1)), "atomic load operand must be power-of-two byte-sized integer", &LI, ElTy); } } else { Assert1(LI.getSynchScope() == CrossThread, "Non-atomic load cannot have SynchronizationScope specified", &LI); } if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) { unsigned NumOperands = Range->getNumOperands(); Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); unsigned NumRanges = NumOperands / 2; Assert1(NumRanges >= 1, "It should have at least one range!", Range); ConstantRange LastRange(1); // Dummy initial value for (unsigned i = 0; i < NumRanges; ++i) { ConstantInt *Low = dyn_cast(Range->getOperand(2*i)); Assert1(Low, "The lower limit must be an integer!", Low); ConstantInt *High = dyn_cast(Range->getOperand(2*i + 1)); Assert1(High, "The upper limit must be an integer!", High); Assert1(High->getType() == Low->getType() && High->getType() == ElTy, "Range types must match load type!", &LI); APInt HighV = High->getValue(); APInt LowV = Low->getValue(); ConstantRange CurRange(LowV, HighV); Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), "Range must not be empty!", Range); if (i != 0) { Assert1(CurRange.intersectWith(LastRange).isEmptySet(), "Intervals are overlapping", Range); Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", Range); Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", Range); } LastRange = ConstantRange(LowV, HighV); } if (NumRanges > 2) { APInt FirstLow = dyn_cast(Range->getOperand(0))->getValue(); APInt FirstHigh = dyn_cast(Range->getOperand(1))->getValue(); ConstantRange FirstRange(FirstLow, FirstHigh); Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), "Intervals are overlapping", Range); Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", Range); } } visitInstruction(LI); } void Verifier::visitStoreInst(StoreInst &SI) { PointerType *PTy = dyn_cast(SI.getOperand(1)->getType()); Assert1(PTy, "Store operand must be a pointer.", &SI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), "Stored value type does not match pointer operand type!", &SI, ElTy); Assert1(SI.getAlignment() <= Value::MaximumAlignment, "huge alignment values are unsupported", &SI); if (SI.isAtomic()) { Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, "Store cannot have Acquire ordering", &SI); Assert1(SI.getAlignment() != 0, "Atomic store must specify explicit alignment", &SI); if (!ElTy->isPointerTy()) { Assert2(ElTy->isIntegerTy(), "atomic store operand must have integer type!", &SI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); Assert2(Size >= 8 && !(Size & (Size - 1)), "atomic store operand must be power-of-two byte-sized integer", &SI, ElTy); } } else { Assert1(SI.getSynchScope() == CrossThread, "Non-atomic store cannot have SynchronizationScope specified", &SI); } visitInstruction(SI); } void Verifier::visitAllocaInst(AllocaInst &AI) { SmallPtrSet Visited; PointerType *PTy = AI.getType(); Assert1(PTy->getAddressSpace() == 0, "Allocation instruction pointer not in the generic address space!", &AI); Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type", &AI); Assert1(AI.getArraySize()->getType()->isIntegerTy(), "Alloca array size must have integer type", &AI); Assert1(AI.getAlignment() <= Value::MaximumAlignment, "huge alignment values are unsupported", &AI); visitInstruction(AI); } void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { // FIXME: more conditions??? Assert1(CXI.getSuccessOrdering() != NotAtomic, "cmpxchg instructions must be atomic.", &CXI); Assert1(CXI.getFailureOrdering() != NotAtomic, "cmpxchg instructions must be atomic.", &CXI); Assert1(CXI.getSuccessOrdering() != Unordered, "cmpxchg instructions cannot be unordered.", &CXI); Assert1(CXI.getFailureOrdering() != Unordered, "cmpxchg instructions cannot be unordered.", &CXI); Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), "cmpxchg instructions be at least as constrained on success as fail", &CXI); Assert1(CXI.getFailureOrdering() != Release && CXI.getFailureOrdering() != AcquireRelease, "cmpxchg failure ordering cannot include release semantics", &CXI); PointerType *PTy = dyn_cast(CXI.getOperand(0)->getType()); Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); Type *ElTy = PTy->getElementType(); Assert2(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); Assert2(Size >= 8 && !(Size & (Size - 1)), "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy); Assert2(ElTy == CXI.getOperand(1)->getType(), "Expected value type does not match pointer operand type!", &CXI, ElTy); Assert2(ElTy == CXI.getOperand(2)->getType(), "Stored value type does not match pointer operand type!", &CXI, ElTy); visitInstruction(CXI); } void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { Assert1(RMWI.getOrdering() != NotAtomic, "atomicrmw instructions must be atomic.", &RMWI); Assert1(RMWI.getOrdering() != Unordered, "atomicrmw instructions cannot be unordered.", &RMWI); PointerType *PTy = dyn_cast(RMWI.getOperand(0)->getType()); Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); Type *ElTy = PTy->getElementType(); Assert2(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", &RMWI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); Assert2(Size >= 8 && !(Size & (Size - 1)), "atomicrmw operand must be power-of-two byte-sized integer", &RMWI, ElTy); Assert2(ElTy == RMWI.getOperand(1)->getType(), "Argument value type does not match pointer operand type!", &RMWI, ElTy); Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, "Invalid binary operation!", &RMWI); visitInstruction(RMWI); } void Verifier::visitFenceInst(FenceInst &FI) { const AtomicOrdering Ordering = FI.getOrdering(); Assert1(Ordering == Acquire || Ordering == Release || Ordering == AcquireRelease || Ordering == SequentiallyConsistent, "fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering.", &FI); visitInstruction(FI); } void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), EVI.getIndices()) == EVI.getType(), "Invalid ExtractValueInst operands!", &EVI); visitInstruction(EVI); } void Verifier::visitInsertValueInst(InsertValueInst &IVI) { Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), IVI.getIndices()) == IVI.getOperand(1)->getType(), "Invalid InsertValueInst operands!", &IVI); visitInstruction(IVI); } void Verifier::visitLandingPadInst(LandingPadInst &LPI) { BasicBlock *BB = LPI.getParent(); // The landingpad instruction is ill-formed if it doesn't have any clauses and // isn't a cleanup. Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); // The landingpad instruction defines its parent as a landing pad block. The // landing pad block may be branched to only by the unwind edge of an invoke. for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { const InvokeInst *II = dyn_cast((*I)->getTerminator()); Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, "Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", &LPI); } // The landingpad instruction must be the first non-PHI instruction in the // block. Assert1(LPI.getParent()->getLandingPadInst() == &LPI, "LandingPadInst not the first non-PHI instruction in the block.", &LPI); // The personality functions for all landingpad instructions within the same // function should match. if (PersonalityFn) Assert1(LPI.getPersonalityFn() == PersonalityFn, "Personality function doesn't match others in function", &LPI); PersonalityFn = LPI.getPersonalityFn(); // All operands must be constants. Assert1(isa(PersonalityFn), "Personality function is not constant!", &LPI); for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { Constant *Clause = LPI.getClause(i); if (LPI.isCatch(i)) { Assert1(isa(Clause->getType()), "Catch operand does not have pointer type!", &LPI); } else { Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); Assert1(isa(Clause) || isa(Clause), "Filter operand is not an array of constants!", &LPI); } } visitInstruction(LPI); } void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { Instruction *Op = cast(I.getOperand(i)); // If the we have an invalid invoke, don't try to compute the dominance. // We already reject it in the invoke specific checks and the dominance // computation doesn't handle multiple edges. if (InvokeInst *II = dyn_cast(Op)) { if (II->getNormalDest() == II->getUnwindDest()) return; } const Use &U = I.getOperandUse(i); Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); } /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); Assert1(BB, "Instruction not embedded in basic block!", &I); if (!isa(I)) { // Check that non-phi nodes are not self referential for (User *U : I.users()) { Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB), "Only PHI nodes may reference their own value!", &I); } } // Check that void typed values don't have names Assert1(!I.getType()->isVoidTy() || !I.hasName(), "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. Assert1(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), "Instruction returns a non-scalar type!", &I); // Check that the instruction doesn't produce metadata. Calls are already // checked against the callee type. Assert1(!I.getType()->isMetadataTy() || isa(I) || isa(I), "Invalid use of metadata!", &I); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (Use &U : I.uses()) { if (Instruction *Used = dyn_cast(U.getUser())) Assert2(Used->getParent() != nullptr, "Instruction referencing" " instruction not embedded in a basic block!", &I, Used); else { CheckFailed("Use of instruction is not an instruction!", U); return; } } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); // Check to make sure that only first-class-values are operands to // instructions. if (!I.getOperand(i)->getType()->isFirstClassType()) { Assert1(0, "Instruction operands must be first-class values!", &I); } if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. Assert1(!F->isIntrinsic() || i == (isa(I) ? e-1 : 0), "Cannot take the address of an intrinsic!", &I); Assert1(!F->isIntrinsic() || isa(I) || F->getIntrinsicID() == Intrinsic::donothing, "Cannot invoke an intrinsinc other than donothing", &I); Assert1(F->getParent() == M, "Referencing function in another module!", &I); } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { Assert1(OpBB->getParent() == BB->getParent(), "Referring to a basic block in another function!", &I); } else if (Argument *OpArg = dyn_cast(I.getOperand(i))) { Assert1(OpArg->getParent() == BB->getParent(), "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast(I.getOperand(i))) { Assert1(GV->getParent() == M, "Referencing global in another module!", &I); } else if (isa(I.getOperand(i))) { verifyDominatesUse(I, i); } else if (isa(I.getOperand(i))) { Assert1((i + 1 == e && isa(I)) || (i + 3 == e && isa(I)), "Cannot take the address of an inline asm!", &I); } else if (ConstantExpr *CE = dyn_cast(I.getOperand(i))) { if (CE->getType()->isPtrOrPtrVectorTy()) { // If we have a ConstantExpr pointer, we need to see if it came from an // illegal bitcast (inttoptr ) SmallVector Stack; SmallPtrSet Visited; Stack.push_back(CE); while (!Stack.empty()) { const ConstantExpr *V = Stack.pop_back_val(); if (!Visited.insert(V)) continue; VerifyConstantExprBitcastType(V); for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { if (ConstantExpr *Op = dyn_cast(V->getOperand(I))) Stack.push_back(Op); } } } } } if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { Assert1(I.getType()->isFPOrFPVectorTy(), "fpmath requires a floating point result!", &I); Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); Value *Op0 = MD->getOperand(0); if (ConstantFP *CFP0 = dyn_cast_or_null(Op0)) { APFloat Accuracy = CFP0->getValueAPF(); Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), "fpmath accuracy not a positive number!", &I); } else { Assert1(false, "invalid fpmath accuracy!", &I); } } MDNode *MD = I.getMetadata(LLVMContext::MD_range); Assert1(!MD || isa(I) || isa(I) || isa(I), "Ranges are only for loads, calls and invokes!", &I); InstsInThisBlock.insert(&I); } /// VerifyIntrinsicType - Verify that the specified type (which comes from an /// intrinsic argument or return value) matches the type constraints specified /// by the .td file (e.g. an "any integer" argument really is an integer). /// /// This return true on error but does not print a message. bool Verifier::VerifyIntrinsicType(Type *Ty, ArrayRef &Infos, SmallVectorImpl &ArgTys) { using namespace Intrinsic; // If we ran out of descriptors, there are too many arguments. if (Infos.empty()) return true; IITDescriptor D = Infos.front(); Infos = Infos.slice(1); switch (D.Kind) { case IITDescriptor::Void: return !Ty->isVoidTy(); case IITDescriptor::VarArg: return true; case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); case IITDescriptor::Metadata: return !Ty->isMetadataTy(); case IITDescriptor::Half: return !Ty->isHalfTy(); case IITDescriptor::Float: return !Ty->isFloatTy(); case IITDescriptor::Double: return !Ty->isDoubleTy(); case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); case IITDescriptor::Vector: { VectorType *VT = dyn_cast(Ty); return !VT || VT->getNumElements() != D.Vector_Width || VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); } case IITDescriptor::Pointer: { PointerType *PT = dyn_cast(Ty); return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); } case IITDescriptor::Struct: { StructType *ST = dyn_cast(Ty); if (!ST || ST->getNumElements() != D.Struct_NumElements) return true; for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) return true; return false; } case IITDescriptor::Argument: // Two cases here - If this is the second occurrence of an argument, verify // that the later instance matches the previous instance. if (D.getArgumentNumber() < ArgTys.size()) return Ty != ArgTys[D.getArgumentNumber()]; // Otherwise, if this is the first instance of an argument, record it and // verify the "Any" kind. assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); ArgTys.push_back(Ty); switch (D.getArgumentKind()) { case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); case IITDescriptor::AK_AnyVector: return !isa(Ty); case IITDescriptor::AK_AnyPointer: return !isa(Ty); } llvm_unreachable("all argument kinds not covered"); case IITDescriptor::ExtendArgument: { // This may only be used when referring to a previous vector argument. if (D.getArgumentNumber() >= ArgTys.size()) return true; Type *NewTy = ArgTys[D.getArgumentNumber()]; if (VectorType *VTy = dyn_cast(NewTy)) NewTy = VectorType::getExtendedElementVectorType(VTy); else if (IntegerType *ITy = dyn_cast(NewTy)) NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); else return true; return Ty != NewTy; } case IITDescriptor::TruncArgument: { // This may only be used when referring to a previous vector argument. if (D.getArgumentNumber() >= ArgTys.size()) return true; Type *NewTy = ArgTys[D.getArgumentNumber()]; if (VectorType *VTy = dyn_cast(NewTy)) NewTy = VectorType::getTruncatedElementVectorType(VTy); else if (IntegerType *ITy = dyn_cast(NewTy)) NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); else return true; return Ty != NewTy; } case IITDescriptor::HalfVecArgument: // This may only be used when referring to a previous vector argument. return D.getArgumentNumber() >= ArgTys.size() || !isa(ArgTys[D.getArgumentNumber()]) || VectorType::getHalfElementsVectorType( cast(ArgTys[D.getArgumentNumber()])) != Ty; } llvm_unreachable("unhandled"); } /// \brief Verify if the intrinsic has variable arguments. /// This method is intended to be called after all the fixed arguments have been /// verified first. /// /// This method returns true on error and does not print an error message. bool Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, ArrayRef &Infos) { using namespace Intrinsic; // If there are no descriptors left, then it can't be a vararg. if (Infos.empty()) return isVarArg ? true : false; // There should be only one descriptor remaining at this point. if (Infos.size() != 1) return true; // Check and verify the descriptor. IITDescriptor D = Infos.front(); Infos = Infos.slice(1); if (D.Kind == IITDescriptor::VarArg) return isVarArg ? false : true; return true; } /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF); // Verify that the intrinsic prototype lines up with what the .td files // describe. FunctionType *IFTy = IF->getFunctionType(); bool IsVarArg = IFTy->isVarArg(); SmallVector Table; getIntrinsicInfoTableEntries(ID, Table); ArrayRef TableRef = Table; SmallVector ArgTys; Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), "Intrinsic has incorrect return type!", IF); for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), "Intrinsic has incorrect argument type!", IF); // Verify if the intrinsic call matches the vararg property. if (IsVarArg) Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), "Intrinsic was not defined with variable arguments!", IF); else Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), "Callsite was not defined with variable arguments!", IF); // All descriptors should be absorbed by now. Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); // Now that we have the intrinsic ID and the actual argument types (and we // know they are legal for the intrinsic!) get the intrinsic name through the // usual means. This allows us to verify the mangling of argument types into // the name. const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); Assert1(ExpectedName == IF->getName(), "Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); // If the intrinsic takes MDNode arguments, verify that they are either global // or are local to *this* function. for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) if (MDNode *MD = dyn_cast(CI.getArgOperand(i))) visitMDNode(*MD, CI.getParent()->getParent()); switch (ID) { default: break; case Intrinsic::ctlz: // llvm.ctlz case Intrinsic::cttz: // llvm.cttz Assert1(isa(CI.getArgOperand(1)), "is_zero_undef argument of bit counting intrinsics must be a " "constant int", &CI); break; case Intrinsic::dbg_declare: { // llvm.dbg.declare Assert1(CI.getArgOperand(0) && isa(CI.getArgOperand(0)), "invalid llvm.dbg.declare intrinsic call 1", &CI); MDNode *MD = cast(CI.getArgOperand(0)); Assert1(MD->getNumOperands() == 1, "invalid llvm.dbg.declare intrinsic call 2", &CI); } break; case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: Assert1(isa(CI.getArgOperand(3)), "alignment argument of memory intrinsics must be a constant int", &CI); Assert1(isa(CI.getArgOperand(4)), "isvolatile argument of memory intrinsics must be a constant int", &CI); break; case Intrinsic::gcroot: case Intrinsic::gcwrite: case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { AllocaInst *AI = dyn_cast(CI.getArgOperand(0)->stripPointerCasts()); Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); Assert1(isa(CI.getArgOperand(1)), "llvm.gcroot parameter #2 must be a constant.", &CI); if (!AI->getType()->getElementType()->isPointerTy()) { Assert1(!isa(CI.getArgOperand(1)), "llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", &CI); } } Assert1(CI.getParent()->getParent()->hasGC(), "Enclosing function does not use GC.", &CI); break; case Intrinsic::init_trampoline: Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.init_trampoline parameter #2 must resolve to a function.", &CI); break; case Intrinsic::prefetch: Assert1(isa(CI.getArgOperand(1)) && isa(CI.getArgOperand(2)) && cast(CI.getArgOperand(1))->getZExtValue() < 2 && cast(CI.getArgOperand(2))->getZExtValue() < 4, "invalid arguments to llvm.prefetch", &CI); break; case Intrinsic::stackprotector: Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: Assert1(isa(CI.getArgOperand(0)), "size argument of memory use markers must be a constant integer", &CI); break; case Intrinsic::invariant_end: Assert1(isa(CI.getArgOperand(1)), "llvm.invariant.end parameter #2 must be a constant integer", &CI); break; } } void DebugInfoVerifier::verifyDebugInfo() { if (!VerifyDebugInfo) return; DebugInfoFinder Finder; Finder.processModule(*M); processInstructions(Finder); // Verify Debug Info. // // NOTE: The loud braces are necessary for MSVC compatibility. for (DICompileUnit CU : Finder.compile_units()) { Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU); } for (DISubprogram S : Finder.subprograms()) { Assert1(S.Verify(), "DISubprogram does not Verify!", S); } for (DIGlobalVariable GV : Finder.global_variables()) { Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV); } for (DIType T : Finder.types()) { Assert1(T.Verify(), "DIType does not Verify!", T); } for (DIScope S : Finder.scopes()) { Assert1(S.Verify(), "DIScope does not Verify!", S); } } void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { for (const Function &F : *M) for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg)) Finder.processLocation(*M, DILocation(MD)); if (const CallInst *CI = dyn_cast(&*I)) processCallInst(Finder, *CI); } } void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder, const CallInst &CI) { if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) switch (ID) { case Intrinsic::dbg_declare: Finder.processDeclare(*M, cast(&CI)); break; case Intrinsic::dbg_value: Finder.processValue(*M, cast(&CI)); break; default: break; } } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); raw_null_ostream NullStr; Verifier V(OS ? *OS : NullStr); // Note that this function's return value is inverted from what you would // expect of a function called "verify". return !V.verify(F); } bool llvm::verifyModule(const Module &M, raw_ostream *OS) { raw_null_ostream NullStr; Verifier V(OS ? *OS : NullStr); bool Broken = false; for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) Broken |= !V.verify(*I); // Note that this function's return value is inverted from what you would // expect of a function called "verify". DebugInfoVerifier DIV(OS ? *OS : NullStr); return !V.verify(M) || !DIV.verify(M) || Broken; } namespace { struct VerifierLegacyPass : public FunctionPass { static char ID; Verifier V; bool FatalErrors; VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) { initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } explicit VerifierLegacyPass(bool FatalErrors) : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (!V.verify(F) && FatalErrors) report_fatal_error("Broken function found, compilation aborted!"); return false; } bool doFinalization(Module &M) override { if (!V.verify(M) && FatalErrors) report_fatal_error("Broken module found, compilation aborted!"); return false; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } }; struct DebugInfoVerifierLegacyPass : public ModulePass { static char ID; DebugInfoVerifier V; bool FatalErrors; DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) { initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } explicit DebugInfoVerifierLegacyPass(bool FatalErrors) : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) { initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (!V.verify(M) && FatalErrors) report_fatal_error("Broken debug info found, compilation aborted!"); return false; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } }; } char VerifierLegacyPass::ID = 0; INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) char DebugInfoVerifierLegacyPass::ID = 0; INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier", false, false) FunctionPass *llvm::createVerifierPass(bool FatalErrors) { return new VerifierLegacyPass(FatalErrors); } ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) { return new DebugInfoVerifierLegacyPass(FatalErrors); } PreservedAnalyses VerifierPass::run(Module *M) { if (verifyModule(*M, &dbgs()) && FatalErrors) report_fatal_error("Broken module found, compilation aborted!"); return PreservedAnalyses::all(); } PreservedAnalyses VerifierPass::run(Function *F) { if (verifyFunction(*F, &dbgs()) && FatalErrors) report_fatal_error("Broken function found, compilation aborted!"); return PreservedAnalyses::all(); }