//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for 32 bit PowerPC. // //===----------------------------------------------------------------------===// #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PowerPCInstrInfo.h" #include "PPC32RegisterInfo.h" #include "llvm/Constants.h" // FIXME: REMOVE #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface namespace { class PPC32TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. int ReturnAddrIndex; // FrameIndex for return slot. public: PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Set up the TargetLowering object. // Set up the register classes. addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass); addRegisterClass(MVT::f32, PPC32::GPRCRegisterClass); addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass); computeRegisterProperties(); } /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual std::pair LowerVAStart(SDOperand Chain, SelectionDAG &DAG); virtual std::pair LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG); virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); }; } std::vector PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { // // add beautiful description of PPC stack frame format, or at least some docs // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineBasicBlock& BB = MF.front(); std::vector ArgValues; // Due to the rather complicated nature of the PowerPC ABI, rather than a // fixed size array of physical args, for the sake of simplicity let the STL // handle tracking them for us. std::vector argVR, argPR, argOp; unsigned ArgOffset = 24; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; // Add DAG nodes to load the arguments... On entry to a function on PPC, // the arguments start at offset 24, although they are likely to be passed // in registers. for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { SDOperand newroot, argt; unsigned ObjSize; bool needsLoad = false; MVT::ValueType ObjectVT = getValueType(I->getType()); switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: ObjSize = 4; if (GPR_remaining > 0) { BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); unsigned virtReg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32)); argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot()); if (ObjectVT != MVT::i32) argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot); argVR.push_back(virtReg); argPR.push_back(GPR[GPR_idx]); argOp.push_back(PPC::OR); } else { needsLoad = true; } break; case MVT::i64: ObjSize = 8; // FIXME: can split 64b load between reg/mem if it is last arg in regs if (GPR_remaining > 1) { BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]); MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32)); unsigned virtReg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i32))-1; // FIXME: is this correct? argt = newroot = DAG.getCopyFromReg(virtReg, MVT::i32, DAG.getRoot()); argt = DAG.getCopyFromReg(virtReg+1, MVT::i32, newroot); // Push the arguments for emitting into BB later argVR.push_back(virtReg); argVR.push_back(virtReg+1); argPR.push_back(GPR[GPR_idx]); argPR.push_back(GPR[GPR_idx+1]); argOp.push_back(PPC::OR); argOp.push_back(PPC::OR); } else { needsLoad = true; } break; case MVT::f32: ObjSize = 4; case MVT::f64: ObjSize = 8; if (FPR_remaining > 0) { BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); unsigned virtReg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(ObjectVT)); argt = newroot = DAG.getCopyFromReg(virtReg, ObjectVT, DAG.getRoot()); argVR.push_back(virtReg); argPR.push_back(FPR[FPR_idx]); argOp.push_back(PPC::FMR); --FPR_remaining; ++FPR_idx; } else { needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type if (needsLoad) { int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN); } // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_remaining > 0) { unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; GPR_remaining -= delta; GPR_idx += delta; } ArgOffset += ObjSize; DAG.setRoot(newroot.getValue(1)); ArgValues.push_back(argt); } for (int i = 0, count = argVR.size(); i < count; ++i) { if (argOp[i] == PPC::FMR) BuildMI(&BB, argOp[i], 1, argVR[i]).addReg(argPR[i]); else BuildMI(&BB, argOp[i], 2, argVR[i]).addReg(argPR[i]).addReg(argPR[i]); } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (F.isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); return ArgValues; } std::pair PPC32TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // args_to_use will accumulate outgoing args for the ISD::CALL case in // SelectExpr to use to put the arguments in the appropriate registers. std::vector args_to_use; // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. unsigned NumBytes = 24; if (Args.empty()) { NumBytes = 0; // Save zero bytes. } else { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: NumBytes += 4; break; case MVT::i64: case MVT::f64: NumBytes += 8; break; } // Just to be safe, we'll always reserve the full 24 bytes of linkage area // plus 32 bytes of argument space in case any called code gets funky on us. if (NumBytes < 56) NumBytes = 56; // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32, DAG.getEntryNode()); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = 24; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; std::vector Stores; for (unsigned i = 0, e = Args.size(); i != e; ++i) { // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MVT::ValueType ArgVT = getValueType(Args[i].second); switch (ArgVT) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); else Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); // FALL THROUGH case MVT::i32: if (GPR_remaining > 0) { args_to_use.push_back(Args[i].first); --GPR_remaining; } else { Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff)); } ArgOffset += 4; break; case MVT::i64: // If we have one free GPR left, we can place the upper half of the i64 // in it, and store the other half to the stack. If we have two or more // free GPRs, then we can pass both halves of the i64 in registers. if (GPR_remaining > 0) { SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(1, MVT::i32)); SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(0, MVT::i32)); args_to_use.push_back(Hi); if (GPR_remaining > 1) { args_to_use.push_back(Lo); GPR_remaining -= 2; } else { SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Lo, PtrOff)); --GPR_remaining; } } else { Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff)); } ArgOffset += 8; break; case MVT::f32: case MVT::f64: if (FPR_remaining > 0) { if (isVarArg) { // FIXME: Need FunctionType information so we can conditionally // store only the non-fixed arguments in a vararg function. Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff)); if (GPR_remaining > 0) args_to_use.push_back(DAG.getLoad(MVT::i32, Chain, PtrOff)); if (GPR_remaining > 1) { SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); args_to_use.push_back(DAG.getLoad(MVT::i32, Chain, PtrOff)); } } args_to_use.push_back(Args[i].first); --FPR_remaining; // If we have any FPRs remaining, we may also have GPRs remaining. // Args passed in FPRs consume either 1 (f32) or 2 (f64) available // GPRs. if (GPR_remaining > 0) --GPR_remaining; if (GPR_remaining > 0 && MVT::f64 == ArgVT) --GPR_remaining; } else { Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff)); } ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; break; } } Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee, args_to_use), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } std::pair PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { //vastart just returns the address of the VarArgsFrameIndex slot. return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain); } std::pair PPC32TargetLowering:: LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { MVT::ValueType ArgVT = getValueType(ArgTy); SDOperand Result; if (!isVANext) { Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList); } else { unsigned Amt; if (ArgVT == MVT::i32 || ArgVT == MVT::f32) Amt = 4; else { assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && "Other types should have been promoted for varargs!"); Amt = 8; } Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, DAG.getConstant(Amt, VAList.getValueType())); } return std::make_pair(Result, Chain); } std::pair PPC32TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { abort(); } namespace { //===--------------------------------------------------------------------===// /// ISel - PPC32 specific code to select PPC32 machine instructions for /// SelectionDAG operations. //===--------------------------------------------------------------------===// class ISel : public SelectionDAGISel { /// Comment Here. PPC32TargetLowering PPC32Lowering; /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; unsigned GlobalBaseReg; bool GlobalBaseInitialized; public: ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {} /// runOnFunction - Override this function in order to reset our per-function /// variables. virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseInitialized = false; return SelectionDAGISel::runOnFunction(Fn); } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Codegen the basic block. Select(DAG.getRoot()); // Clear state used for selection. ExprMap.clear(); } unsigned ISel::getGlobalBaseReg(); unsigned SelectExpr(SDOperand N); unsigned SelectExprFP(SDOperand N, unsigned Result); void Select(SDOperand N); void SelectAddr(SDOperand N, unsigned& Reg, int& offset); void SelectBranchCC(SDOperand N); }; /// canUseAsImmediateForOpcode - This method returns a value indicating whether /// the ConstantSDNode N can be used as an immediate to Opcode. The return /// values are either 0, 1 or 2. 0 indicates that either N is not a /// ConstantSDNode, or is not suitable for use by that opcode. A return value /// of 1 indicates that the constant may be used in normal immediate form. A /// return value of 2 indicates that the constant may be used in shifted /// immediate form. If the return value is nonzero, the constant value is /// placed in Imm. /// static unsigned canUseAsImmediateForOpcode(SDOperand N, unsigned Opcode, unsigned& Imm) { if (N.getOpcode() != ISD::Constant) return 0; int v = (int)cast(N)->getSignExtended(); switch(Opcode) { default: return 0; case ISD::ADD: if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } break; case ISD::AND: case ISD::XOR: case ISD::OR: if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } break; case ISD::MUL: if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } break; } return 0; } } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// unsigned ISel::getGlobalBaseReg() { if (!GlobalBaseInitialized) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); GlobalBaseReg = MakeReg(MVT::i32); BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); GlobalBaseInitialized = true; } return GlobalBaseReg; } //Check to see if the load is a constant offset from a base register void ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) { Reg = SelectExpr(N); offset = 0; return; } void ISel::SelectBranchCC(SDOperand N) { assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???"); MachineBasicBlock *Dest = cast(N.getOperand(2))->getBasicBlock(); unsigned Opc; Select(N.getOperand(0)); //chain SDOperand CC = N.getOperand(1); //Giveup and do the stupid thing unsigned Tmp1 = SelectExpr(CC); BuildMI(BB, PPC::BNE, 2).addReg(Tmp1).addMBB(Dest); return; } unsigned ISel::SelectExprFP(SDOperand N, unsigned Result) { unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; SDNode *Node = N.Val; MVT::ValueType DestType = N.getValueType(); unsigned opcode = N.getOpcode(); switch (opcode) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::SELECT: abort(); case ISD::FP_ROUND: assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && "only f64 to f32 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); return Result; case ISD::FP_EXTEND: assert (DestType == MVT::f64 && N.getOperand(0).getValueType() == MVT::f32 && "only f32 to f64 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; case ISD::CopyFromReg: if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Tmp1 = dyn_cast(Node)->getReg(); BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; case ISD::LOAD: case ISD::EXTLOAD: abort(); case ISD::ConstantFP: abort(); case ISD::MUL: case ISD::ADD: case ISD::SUB: case ISD::SDIV: switch( opcode ) { case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break; case ISD::ADD: Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; break; case ISD::SUB: Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; break; case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break; }; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: abort(); } assert(0 && "should not get here"); return 0; } unsigned ISel::SelectExpr(SDOperand N) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; unsigned opcode = N.getOpcode(); SDNode *Node = N.Val; MVT::ValueType DestType = N.getValueType(); unsigned &Reg = ExprMap[N]; if (Reg) return Reg; if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::ADD_PARTS && N.getOpcode() != ISD::SUB_PARTS) Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; else { // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (N.getOpcode() == ISD::CALL) { if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } } else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); } } if (DestType == MVT::f64 || DestType == MVT::f32) return SelectExprFP(N, Result); switch (opcode) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::DYNAMIC_STACKALLOC: // Generate both result values. FIXME: Need a better commment here? if (Result != 1) ExprMap[N.getValue(1)] = 1; else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N.getOperand(2)) || cast(N.getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); // Put a pointer to the space into the result register by copying the SP BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1); return Result; case ISD::ConstantPool: abort(); case ISD::FrameIndex: abort(); case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); unsigned Tmp1 = MakeReg(MVT::i32); BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) .addGlobalAddress(GV); if (GV->hasWeakLinkage() || GV->isExternal()) { BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); } else { BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); } return Result; } case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: { // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); SDOperand Address = N.getOperand(1); Select(Chain); switch (Node->getValueType(0)) { default: assert(0 && "Cannot load this type!"); case MVT::i1: Opc = PPC::LBZ; Tmp3 = 0; break; case MVT::i8: Opc = PPC::LBZ; Tmp3 = 1; break; case MVT::i16: Opc = PPC::LHZ; Tmp3 = 0; break; case MVT::i32: Opc = PPC::LWZ; Tmp3 = 0; break; } if(Address.getOpcode() == ISD::FrameIndex) { BuildMI(BB, Opc, 2, Result) .addFrameIndex(cast(Address)->getIndex()) .addReg(PPC::R1); } else { int offset; SelectAddr(Address, Tmp1, offset); BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); } return Result; } case ISD::CALL: { // Lower the chain for this call. Select(N.getOperand(0)); ExprMap[N.getValue(Node->getNumValues()-1)] = 1; // get the virtual reg for each argument std::vector VRegs; for(int i = 2, e = Node->getNumOperands(); i < e; ++i) VRegs.push_back(SelectExpr(N.getOperand(i))); // The ABI specifies that the first 32 bytes of args may be passed in GPRs, // and that 13 FPRs may also be used for passing any floating point args. int GPR_remaining = 8, FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; // move the vregs into the appropriate architected register or stack slot for(int i = 0, e = VRegs.size(); i < e; ++i) { unsigned OperandType = N.getOperand(i+2).getValueType(); switch(OperandType) { default: Node->dump(); N.getOperand(i).Val->dump(); std::cerr << "Type for " << i << " is: " << N.getOperand(i+2).getValueType() << "\n"; assert(0 && "Unknown value type for call"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (GPR_remaining > 0) BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(VRegs[i]) .addReg(VRegs[i]); break; case MVT::f32: case MVT::f64: if (FPR_remaining > 0) { BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(VRegs[i]); ++FPR_idx; --FPR_remaining; } break; } // All arguments consume GPRs available for argument passing if (GPR_remaining > 0) { ++GPR_idx; --GPR_remaining; } if (MVT::f64 == OperandType && GPR_remaining > 0) { ++GPR_idx; --GPR_remaining; } } // Emit the correct call instruction based on the type of symbol called. if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { BuildMI(BB, PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), true); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { BuildMI(BB, PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), true); } else { Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); BuildMI(BB, PPC::CALLindirect, 3).addImm(20).addImm(0).addReg(PPC::R12); } switch (Node->getValueType(0)) { default: assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3); if (Node->getValueType(1) == MVT::i32) BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R4).addReg(PPC::R4); break; case MVT::f32: case MVT::f64: BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1); break; } return Result+N.ResNo; } case ISD::SIGN_EXTEND: case ISD::SIGN_EXTEND_INREG: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); return Result; case ISD::ZERO_EXTEND_INREG: Tmp1 = SelectExpr(N.getOperand(0)); switch(cast(Node)->getExtraValueType()) { default: Node->dump(); assert(0 && "Zero Extend InReg not there yet"); break; case MVT::i16: Tmp2 = 16; break; case MVT::i8: Tmp2 = 24; break; case MVT::i1: Tmp2 = 31; break; } BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(0).addImm(0) .addImm(Tmp2).addImm(31); return Result; case ISD::CopyFromReg: if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Tmp1 = dyn_cast(Node)->getReg(); BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1); return Result; case ISD::SHL: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) .addImm(31-Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRL: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::RLWINM, 5, Result).addReg(Tmp1).addImm(32-Tmp2) .addImm(Tmp2).addImm(31); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRA: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::ADD: assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); Tmp1 = SelectExpr(N.getOperand(0)); switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2); break; case 2: // Shifted immediate BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2); break; } return Result; case ISD::AND: case ISD::OR: case ISD::XOR: assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); Tmp1 = SelectExpr(N.getOperand(0)); switch(canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate Tmp2 = SelectExpr(N.getOperand(1)); switch (opcode) { case ISD::AND: Opc = PPC::AND; break; case ISD::OR: Opc = PPC::OR; break; case ISD::XOR: Opc = PPC::XOR; break; } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate switch (opcode) { case ISD::AND: Opc = PPC::ANDIo; break; case ISD::OR: Opc = PPC::ORI; break; case ISD::XOR: Opc = PPC::XORI; break; } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); break; case 2: // Shifted immediate switch (opcode) { case ISD::AND: Opc = PPC::ANDISo; break; case ISD::OR: Opc = PPC::ORIS; break; case ISD::XOR: Opc = PPC::XORIS; break; } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); break; } return Result; case ISD::SUB: assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); return Result; case ISD::MUL: assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); Tmp1 = SelectExpr(N.getOperand(0)); if (1 == canUseAsImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::ADD_PARTS: case ISD::SUB_PARTS: case ISD::UREM: case ISD::SREM: case ISD::SDIV: case ISD::UDIV: abort(); case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: abort(); case ISD::SETCC: abort(); case ISD::SELECT: abort(); case ISD::Constant: switch (N.getValueType()) { default: assert(0 && "Cannot use constants of this type!"); case MVT::i1: BuildMI(BB, PPC::LI, 1, Result) .addSImm(!cast(N)->isNullValue()); break; case MVT::i32: { int v = (int)cast(N)->getSignExtended(); if (v < 32768 && v >= -32768) { BuildMI(BB, PPC::LI, 1, Result).addSImm(v); } else { Tmp1 = MakeReg(MVT::i32); BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16); BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF); } } } return Result; } return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Opc; unsigned opcode = N.getOpcode(); if (!ExprMap.insert(std::make_pair(N, 1)).second) return; // Already selected. SDNode *Node = N.Val; switch (Node->getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::EntryToken: return; // Noop case ISD::TokenFactor: for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Select(Node->getOperand(i)); return; case ISD::ADJCALLSTACKDOWN: case ISD::ADJCALLSTACKUP: Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; case ISD::BR: { MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); Select(N.getOperand(0)); BuildMI(BB, PPC::B, 1).addMBB(Dest); return; } case ISD::BRCOND: SelectBranchCC(N); return; case ISD::CopyToReg: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = cast(N)->getReg(); if (Tmp1 != Tmp2) { if (N.getOperand(1).getValueType() == MVT::f64 || N.getOperand(1).getValueType() == MVT::f32) BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1); else BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); } return; case ISD::ImplicitDef: Select(N.getOperand(0)); BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast(N)->getReg()); return; case ISD::RET: switch (N.getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 3: assert(N.getOperand(1).getValueType() == MVT::i32 && N.getOperand(2).getValueType() == MVT::i32 && "Unknown two-register value!"); Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(2)); BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp2).addReg(Tmp2); break; case 2: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); switch (N.getOperand(1).getValueType()) { default: assert(0 && "Unknown return type!"); case MVT::f64: case MVT::f32: BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1); break; case MVT::i32: BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); break; } case 1: Select(N.getOperand(0)); break; } BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction return; case ISD::TRUNCSTORE: case ISD::STORE: { SDOperand Chain = N.getOperand(0); SDOperand Value = N.getOperand(1); SDOperand Address = N.getOperand(2); Select(Chain); Tmp1 = SelectExpr(Value); //value if (opcode == ISD::STORE) { switch(Value.getValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i32: Opc = PPC::STW; break; case MVT::f64: Opc = PPC::STFD; break; case MVT::f32: Opc = PPC::STFS; break; } } else { //ISD::TRUNCSTORE switch(cast(Node)->getExtraValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i1: //FIXME: DAG does not promote this load case MVT::i8: Opc = PPC::STB; break; case MVT::i16: Opc = PPC::STH; break; } } if (Address.getOpcode() == ISD::GlobalAddress) { BuildMI(BB, Opc, 2).addReg(Tmp1) .addGlobalAddress(cast(Address)->getGlobal()); } else if(Address.getOpcode() == ISD::FrameIndex) { BuildMI(BB, Opc, 2).addReg(Tmp1) .addFrameIndex(cast(Address)->getIndex()); } else { int offset; SelectAddr(Address, Tmp2, offset); BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2); } return; } case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: case ISD::LOAD: case ISD::CopyFromReg: case ISD::CALL: case ISD::DYNAMIC_STACKALLOC: ExprMap.erase(N); SelectExpr(N); return; } assert(0 && "Should not be reached!"); } /// createPPC32PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) { return new ISel(TM); }