//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/SymbolTable.h" #include "llvm/Type.h" #include "llvm/Support/LeakDetector.h" using namespace llvm; Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, const std::string &Name, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps, Name), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // If requested, insert this instruction into a basic block... if (InsertBefore) { assert(InsertBefore->getParent() && "Instruction to insert before is not in a basic block!"); InsertBefore->getParent()->getInstList().insert(InsertBefore, this); } } Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps, const std::string &Name, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps, Name), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); InsertAtEnd->getInstList().push_back(this); } void Instruction::setOpcode(unsigned opc) { setValueType(Value::InstructionVal + opc); } void Instruction::setParent(BasicBlock *P) { if (getParent()) { if (!P) LeakDetector::addGarbageObject(this); } else { if (P) LeakDetector::removeGarbageObject(this); } Parent = P; } // Specialize setName to take care of symbol table majik void Instruction::setName(const std::string &name, SymbolTable *ST) { BasicBlock *P = 0; Function *PP = 0; assert((ST == 0 || !getParent() || !getParent()->getParent() || ST == &getParent()->getParent()->getSymbolTable()) && "Invalid symtab argument!"); if ((P = getParent()) && (PP = P->getParent()) && hasName()) PP->getSymbolTable().remove(this); Value::setName(name); if (PP && hasName()) PP->getSymbolTable().insert(this); } void Instruction::removeFromParent() { getParent()->getInstList().remove(this); } void Instruction::eraseFromParent() { getParent()->getInstList().erase(this); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case Invoke: return "invoke"; case Unwind: return "unwind"; case Unreachable: return "unreachable"; // Standard binary operators... case Add: return "add"; case Sub: return "sub"; case Mul: return "mul"; case Div: return "div"; case Rem: return "rem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // SetCC operators... case SetLE: return "setle"; case SetGE: return "setge"; case SetLT: return "setlt"; case SetGT: return "setgt"; case SetEQ: return "seteq"; case SetNE: return "setne"; // Memory instructions... case Malloc: return "malloc"; case Free: return "free"; case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case GetElementPtr: return "getelementptr"; // Other instructions... case PHI: return "phi"; case Cast: return "cast"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case Shr: return "shr"; case VANext: return "vanext"; case VAArg: return "vaarg"; default: return " "; } return 0; } /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool Instruction::isIdenticalTo(Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i) != I->getOperand(i)) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast(this)) return LI->isVolatile() == cast(I)->isVolatile(); if (const StoreInst *SI = dyn_cast(this)) return SI->isVolatile() == cast(I)->isVolatile(); if (const VANextInst *VAN = dyn_cast(this)) return VAN->getArgType() == cast(I)->getArgType(); return true; } /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z) /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not /// applied to floating point types. /// bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) { if (Opcode == Add || Opcode == Mul || Opcode == And || Opcode == Or || Opcode == Xor) { // Floating point operations do not associate! return !Ty->isFloatingPoint(); } return 0; } /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool Instruction::isCommutative(unsigned op) { switch (op) { case Add: case Mul: case And: case Or: case Xor: case SetEQ: case SetNE: return true; default: return false; } } /// isRelational - Return true if the instruction is a Set* instruction: /// bool Instruction::isRelational(unsigned op) { switch (op) { case SetEQ: case SetNE: case SetLT: case SetGT: case SetLE: case SetGE: return true; } return false; } /// isTrappingInstruction - Return true if the instruction may trap. /// bool Instruction::isTrapping(unsigned op) { switch(op) { case Div: case Rem: case Load: case Store: case Call: case Invoke: return true; default: return false; } }