//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/ScheduleDAGSDNodes.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumNoops , "Number of noops inserted"); STATISTIC(NumStalls, "Number of pipeline stalls"); static RegisterScheduler tdListDAGScheduler("list-td", "Top-down list scheduler", createTDListDAGScheduler); namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGList - The actual list scheduler implementation. This supports /// top-down scheduling. /// class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAGSDNodes { private: /// AvailableQueue - The priority queue to use for the available SUnits. /// SchedulingPriorityQueue *AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands become available, the instruction is /// added to the AvailableQueue. std::vector PendingQueue; /// HazardRec - The hazard recognizer to use. HazardRecognizer *HazardRec; public: ScheduleDAGList(SelectionDAG *dag, MachineBasicBlock *bb, const TargetMachine &tm, SchedulingPriorityQueue *availqueue, HazardRecognizer *HR) : ScheduleDAGSDNodes(dag, bb, tm), AvailableQueue(availqueue), HazardRec(HR) { } ~ScheduleDAGList() { delete HazardRec; delete AvailableQueue; } void Schedule(); private: void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); }; } // end anonymous namespace HazardRecognizer::~HazardRecognizer() {} /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGList::Schedule() { DOUT << "********** List Scheduling **********\n"; // Build scheduling units. BuildSchedUnits(); AvailableQueue->initNodes(SUnits); ListScheduleTopDown(); AvailableQueue->releaseState(); } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) { --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; SuccSU->dump(this); cerr << " has been released too many times!\n"; assert(0); } #endif // Compute the cycle when this SUnit actually becomes available. This // is the max of the start time of all predecessors plus their latencies. // If this is a token edge, we don't need to wait for the latency of the // preceeding instruction (e.g. a long-latency load) unless there is also // some other data dependence. unsigned PredDoneCycle = SU->Cycle; if (!isChain) PredDoneCycle += SU->Latency; else if (SU->Latency) PredDoneCycle += 1; SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle); if (SuccSU->NumPredsLeft == 0) { PendingQueue.push_back(SuccSU); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(this)); Sequence.push_back(SU); SU->Cycle = CurCycle; // Top down: release successors. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(SU, I->Dep, I->isCtrl); SU->isScheduled = true; AvailableQueue->ScheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGList::ListScheduleTopDown() { unsigned CurCycle = 0; // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = true; } } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; Sequence.reserve(SUnits.size()); while (!AvailableQueue->empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i]->CycleBound == CurCycle) { AvailableQueue->push(PendingQueue[i]); PendingQueue[i]->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else { assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?"); } } // If there are no instructions available, don't try to issue anything, and // don't advance the hazard recognizer. if (AvailableQueue->empty()) { ++CurCycle; continue; } SUnit *FoundSUnit = 0; SDNode *FoundNode = 0; bool HasNoopHazards = false; while (!AvailableQueue->empty()) { SUnit *CurSUnit = AvailableQueue->pop(); // Get the node represented by this SUnit. FoundNode = CurSUnit->getNode(); // If this is a pseudo op, like copyfromreg, look to see if there is a // real target node flagged to it. If so, use the target node. while (!FoundNode->isMachineOpcode()) { SDNode *N = FoundNode->getFlaggedNode(); if (!N) break; FoundNode = N; } HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode); if (HT == HazardRecognizer::NoHazard) { FoundSUnit = CurSUnit; break; } // Remember if this is a noop hazard. HasNoopHazards |= HT == HazardRecognizer::NoopHazard; NotReady.push_back(CurSUnit); } // Add the nodes that aren't ready back onto the available list. if (!NotReady.empty()) { AvailableQueue->push_all(NotReady); NotReady.clear(); } // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); HazardRec->EmitInstruction(FoundNode); // If this is a pseudo-op node, we don't want to increment the current // cycle. if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } else if (!HasNoopHazards) { // Otherwise, we have a pipeline stall, but no other problem, just advance // the current cycle and try again. DOUT << "*** Advancing cycle, no work to do\n"; HazardRec->AdvanceCycle(); ++NumStalls; ++CurCycle; } else { // Otherwise, we have no instructions to issue and we have instructions // that will fault if we don't do this right. This is the case for // processors without pipeline interlocks and other cases. DOUT << "*** Emitting noop\n"; HazardRec->EmitNoop(); Sequence.push_back(0); // NULL SUnit* -> noop ++NumNoops; ++CurCycle; } } #ifndef NDEBUG VerifySchedule(/*isBottomUp=*/false); #endif } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// /// createTDListDAGScheduler - This creates a top-down list scheduler with a /// new hazard recognizer. This scheduler takes ownership of the hazard /// recognizer and deletes it when done. ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, const TargetMachine *TM, MachineBasicBlock *BB, bool Fast) { return new ScheduleDAGList(DAG, BB, *TM, new LatencyPriorityQueue(), IS->CreateTargetHazardRecognizer()); }