#include "llvm/CodeGen/PhyRegAlloc.h" cl::Enum DEBUG_RA("dregalloc", cl::NoFlags, "enable register allocation debugging information", clEnumValN(RA_DEBUG_None , "n", "disable debug output"), clEnumValN(RA_DEBUG_Normal , "y", "enable debug output"), clEnumValN(RA_DEBUG_Verbose, "v", "enable extra debug output"), 0); //---------------------------------------------------------------------------- // Constructor: Init local composite objects and create register classes. //---------------------------------------------------------------------------- PhyRegAlloc::PhyRegAlloc(const Method *const M, const TargetMachine& tm, MethodLiveVarInfo *const Lvi) : RegClassList(), Meth(M), TM(tm), LVI(Lvi), LRI(M, tm, RegClassList), MRI( tm.getRegInfo() ), NumOfRegClasses(MRI.getNumOfRegClasses()), AddedInstrMap() { // **TODO: use an actual reserved color list ReservedColorListType *RCL = new ReservedColorListType(); // create each RegisterClass and put in RegClassList for( unsigned int rc=0; rc < NumOfRegClasses; rc++) RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), RCL) ); } //---------------------------------------------------------------------------- // This method initally creates interference graphs (one in each reg class) // and IGNodeList (one in each IG). The actual nodes will be pushed later. //---------------------------------------------------------------------------- void PhyRegAlloc::createIGNodeListsAndIGs() { if(DEBUG_RA ) cout << "Creating LR lists ..." << endl; // hash map iterator LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); // hash map end LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); for( ; HMI != HMIEnd ; ++HMI ) { if( (*HMI).first ) { LiveRange *L = (*HMI).second; // get the LiveRange if( !L) { if( DEBUG_RA) { cout << "\n*?!?Warning: Null liver range found for: "; printValue( (*HMI).first) ; cout << endl; } continue; } // if the Value * is not null, and LR // is not yet written to the IGNodeList if( !(L->getUserIGNode()) ) { RegClass *const RC = // RegClass of first value in the LR //RegClassList [MRI.getRegClassIDOfValue(*(L->begin()))]; RegClassList[ L->getRegClass()->getID() ]; RC-> addLRToIG( L ); // add this LR to an IG } } } // init RegClassList for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->createInterferenceGraph(); if( DEBUG_RA) cout << "LRLists Created!" << endl; } //---------------------------------------------------------------------------- // This method will add all interferences at for a given instruction. // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg // class as that of live var. The live var passed to this function is the // LVset AFTER the instruction //---------------------------------------------------------------------------- void PhyRegAlloc::addInterference(const Value *const Def, const LiveVarSet *const LVSet, const bool isCallInst) { LiveVarSet::const_iterator LIt = LVSet->begin(); // get the live range of instruction const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def ); IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); assert( IGNodeOfDef ); RegClass *const RCOfDef = LROfDef->getRegClass(); // for each live var in live variable set for( ; LIt != LVSet->end(); ++LIt) { if( DEBUG_RA > 1) { cout << "< Def="; printValue(Def); cout << ", Lvar="; printValue( *LIt); cout << "> "; } // get the live range corresponding to live var LiveRange *const LROfVar = LRI.getLiveRangeForValue(*LIt ); // LROfVar can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if( LROfVar) { if(LROfDef == LROfVar) // do not set interf for same LR continue; // if 2 reg classes are the same set interference if( RCOfDef == LROfVar->getRegClass() ){ RCOfDef->setInterference( LROfDef, LROfVar); } //the live range of this var interferes with this call if( isCallInst ) { LROfVar->addCallInterference( (const Instruction *const) Def ); // cout << "\n ++Added Call Interf to set:"; //LROfVar->printSet(); } } else if(DEBUG_RA > 1) { // we will not have LRs for values not explicitly allocated in the // instruction stream (e.g., constants) cout << " warning: no live range for " ; printValue( *LIt); cout << endl; } } } //---------------------------------------------------------------------------- // This method will walk thru code and create interferences in the IG of // each RegClass. //---------------------------------------------------------------------------- void PhyRegAlloc::buildInterferenceGraphs() { if(DEBUG_RA) cout << "Creating interference graphs ..." << endl; Method::const_iterator BBI = Meth->begin(); // random iterator for BBs for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order // get the iterator for machine instructions const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); MachineCodeForBasicBlock::const_iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); ++MInstIterator) { const MachineInstr *const MInst = *MInstIterator; // get the LV set after the instruction const LiveVarSet *const LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, *BBI); const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); // if( isCallInst) cout << "\n%%% Found call Inst:\n"; // iterate over MI operands to find defs for( MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done(); ++OpI) { if( OpI.isDef() ) { // create a new LR iff this operand is a def addInterference(*OpI, LVSetAI, isCallInst ); } //if this is a def } // for all operands // Also add interference for any implicit definitions in a machine // instr (currently, only calls have this). unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if( NumOfImpRefs > 0 ) { for(unsigned z=0; z < NumOfImpRefs; z++) if( MInst->implicitRefIsDefined(z) ) addInterference( MInst->getImplicitRef(z), LVSetAI, isCallInst ); } } // for all machine instructions in BB #if 0 // go thru LLVM instructions in the basic block and record all CALL // instructions and Return instructions in the CallInstrList // This is done because since there are no reverse pointers in machine // instructions to find the llvm instruction, when we encounter a call // or a return whose args must be specailly colored (e.g., %o's for args) BasicBlock::const_iterator InstIt = (*BBI)->begin(); for( ; InstIt != (*BBI)->end() ; ++ InstIt) { unsigned OpCode = (*InstIt)->getOpcode(); if( OpCode == Instruction::Call ) CallInstrList.push_back( *InstIt ); else if( OpCode == Instruction::Ret ) RetInstrList.push_back( *InstIt ); } #endif } // for all BBs in method // add interferences for method arguments. Since there are no explict // defs in method for args, we have to add them manually addInterferencesForArgs(); // add interference for method args if( DEBUG_RA) cout << "Interference graphs calculted!" << endl; } //---------------------------------------------------------------------------- // This method will add interferences for incoming arguments to a method. //---------------------------------------------------------------------------- void PhyRegAlloc::addInterferencesForArgs() { // get the InSet of root BB const LiveVarSet *const InSet = LVI->getInSetOfBB( Meth->front() ); // get the argument list const Method::ArgumentListType& ArgList = Meth->getArgumentList(); // get an iterator to arg list Method::ArgumentListType::const_iterator ArgIt = ArgList.begin(); for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument addInterference( *ArgIt, InSet, false ); // add interferences between // args and LVars at start if( DEBUG_RA > 1) { cout << " - %% adding interference for argument "; printValue( (const Value *) *ArgIt); cout << endl; } } } //---------------------------------------------------------------------------- // This method inserts caller saving/restoring instructons before/after // a call machine instruction. //---------------------------------------------------------------------------- void PhyRegAlloc::insertCallerSavingCode(const MachineInstr *MInst, const BasicBlock *BB ) { assert( (TM.getInstrInfo()).isCall( MInst->getOpCode() ) ); int StackOff = -8; // ****TODO : Change hash_set PushedRegSet; // Now find the LR of the return value of the call // The last *implicit operand* is the return value of a call // Insert it to to he PushedRegSet since we must not save that register // and restore it after the call. // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but we must not save/restore it. unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if( NumOfImpRefs > 0 ) { if( MInst->implicitRefIsDefined(NumOfImpRefs-1) ) { const Value *RetVal = MInst->getImplicitRef(NumOfImpRefs-1); LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal ); assert( RetValLR && "No LR for RetValue of call"); PushedRegSet.insert( MRI.getUnifiedRegNum((RetValLR->getRegClass())->getID(), RetValLR->getColor() ) ); } } const LiveVarSet *LVSetAft = LVI->getLiveVarSetAfterMInst(MInst, BB); LiveVarSet::const_iterator LIt = LVSetAft->begin(); // for each live var in live variable set after machine inst for( ; LIt != LVSetAft->end(); ++LIt) { // get the live range corresponding to live var LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); // LROfVar can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if( LR ) { if( LR->hasColor() ) { unsigned RCID = (LR->getRegClass())->getID(); unsigned Color = LR->getColor(); if ( MRI.isRegVolatile(RCID, Color) ) { // if the value is in both LV sets (i.e., live before and after // the call machine instruction) unsigned Reg = MRI.getUnifiedRegNum(RCID, Color); if( PushedRegSet.find(Reg) == PushedRegSet.end() ) { // if we haven't already pushed that register unsigned RegType = MRI.getRegType( LR ); // Now get two instructions - to push on stack and pop from stack // and add them to InstrnsBefore and InstrnsAfter of the // call instruction MachineInstr *AdIBef = MRI.cpReg2MemMI(Reg, MRI.getFramePointer(), StackOff, RegType ); MachineInstr *AdIAft = MRI.cpMem2RegMI(MRI.getFramePointer(), StackOff, Reg, RegType ); ((AddedInstrMap[MInst])->InstrnsBefore).push_front(AdIBef); ((AddedInstrMap[MInst])->InstrnsAfter).push_back(AdIAft); PushedRegSet.insert( Reg ); StackOff -= 8; // ****TODO: Correct ?????? cerr << "\n $$$ Inserted caller saving instr"; } // if not already pushed } // if LR has a volatile color } // if LR has color } // if there is a LR for Var } // for each value in the LV set after instruction } //---------------------------------------------------------------------------- // This method is called after register allocation is complete to set the // allocated reisters in the machine code. This code will add register numbers // to MachineOperands that contain a Value. //---------------------------------------------------------------------------- void PhyRegAlloc::updateMachineCode() { Method::const_iterator BBI = Meth->begin(); // random iterator for BBs for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order // get the iterator for machine instructions MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); ++MInstIterator) { MachineInstr *MInst = *MInstIterator; // if this machine instr is call, insert caller saving code if( (TM.getInstrInfo()).isCall( MInst->getOpCode()) ) insertCallerSavingCode(MInst, *BBI ); // If there are instructions to be added, *before* this machine // instruction, add them now. if( AddedInstrMap[ MInst ] ) { deque &IBef = (AddedInstrMap[MInst])->InstrnsBefore; if( ! IBef.empty() ) { deque::iterator AdIt; for( AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt ) { cerr << " *$* PREPENDed instr opcode: "; cerr << TargetInstrDescriptors[(*AdIt)->getOpCode()].opCodeString; cerr << endl; MInstIterator = MIVec.insert( MInstIterator, *AdIt ); ++MInstIterator; } } } //for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) { for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if( Op.getOperandType() == MachineOperand::MO_VirtualRegister || Op.getOperandType() == MachineOperand::MO_CCRegister) { const Value *const Val = Op.getVRegValue(); // delete this condition checking later (must assert if Val is null) if( !Val) { if (DEBUG_RA) cout << "Warning: NULL Value found for operand" << endl; continue; } assert( Val && "Value is NULL"); const LiveRange *const LR = LRI.getLiveRangeForValue(Val); if ( !LR ) { // nothing to worry if it's a const or a label if (DEBUG_RA) { cout << "*NO LR for operand : " << Op ; cout << " [reg:" << Op.getAllocatedRegNum() << "]"; cout << " in inst:\t" << *MInst << endl; } // if register is not allocated, mark register as invalid if( Op.getAllocatedRegNum() == -1) Op.setRegForValue( MRI.getInvalidRegNum()); #if 0 if( ((Val->getType())->isLabelType()) || (Val->getValueType() == Value::ConstantVal) ) ; // do nothing // The return address is not explicitly defined within a // method. So, it is not colored by usual algorithm. In that case // color it here. //else if (TM.getInstrInfo().isCall(MInst->getOpCode())) //Op.setRegForValue( MRI.getCallAddressReg() ); //TM.getInstrInfo().isReturn(MInst->getOpCode()) else if(TM.getInstrInfo().isReturn(MInst->getOpCode()) ) { if (DEBUG_RA) cout << endl << "RETURN found" << endl; Op.setRegForValue( MRI.getReturnAddressReg() ); } if (Val->getValueType() == Value::InstructionVal) { if( DEBUG_RA ) { cout << "!Warning: No LiveRange for: "; printValue( Val); cout << " Type: " << Val->getValueType(); cout << " RegVal=" << Op.getAllocatedRegNum() << endl; } } #endif continue; } unsigned RCID = (LR->getRegClass())->getID(); Op.setRegForValue( MRI.getUnifiedRegNum(RCID, LR->getColor()) ); int RegNum = MRI.getUnifiedRegNum(RCID, LR->getColor()); } } // for each operand // If there are instructions to be added *after* this machine // instruction, add them now if( AddedInstrMap[ MInst ] ) { deque &IAft = (AddedInstrMap[MInst])->InstrnsAfter; if( ! IAft.empty() ) { deque::iterator AdIt; ++MInstIterator; // advance to the next instruction for( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { cerr << " *#* APPENDed instr opcode: "; cerr << TargetInstrDescriptors[(*AdIt)->getOpCode()].opCodeString; cerr << endl; MInstIterator = MIVec.insert( MInstIterator, *AdIt ); ++MInstIterator; } // MInsterator already points to the next instr. Since the // for loop also increments it, decrement it to point to the // instruction added last --MInstIterator; } } } // for each machine instruction } } //---------------------------------------------------------------------------- // This method prints the code with registers after register allocation is // complete. //---------------------------------------------------------------------------- void PhyRegAlloc::printMachineCode() { cout << endl << ";************** Method "; cout << Meth->getName() << " *****************" << endl; Method::const_iterator BBI = Meth->begin(); // random iterator for BBs for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order cout << endl ; printLabel( *BBI); cout << ": "; // get the iterator for machine instructions MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); ++MInstIterator) { MachineInstr *const MInst = *MInstIterator; cout << endl << "\t"; cout << TargetInstrDescriptors[MInst->getOpCode()].opCodeString; //for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) { for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if( Op.getOperandType() == MachineOperand::MO_VirtualRegister || Op.getOperandType() == MachineOperand::MO_CCRegister || Op.getOperandType() == MachineOperand::MO_PCRelativeDisp ) { const Value *const Val = Op.getVRegValue () ; // ****this code is temporary till NULL Values are fixed if( ! Val ) { cout << "\t<*NULL*>"; continue; } // if a label or a constant if( (Val->getValueType() == Value::BasicBlockVal) ) { cout << "\t"; printLabel( Op.getVRegValue () ); } else { // else it must be a register value const int RegNum = Op.getAllocatedRegNum(); //if( RegNum != 1000) cout << "\t" << "%" << MRI.getUnifiedRegName( RegNum ); // else cout << "\t<*NoReg*>"; } } else if(Op.getOperandType() == MachineOperand::MO_MachineRegister) { cout << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum()); } else cout << "\t" << Op; // use dump field } unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if( NumOfImpRefs > 0 ) { cout << "\tImplicit:"; for(unsigned z=0; z < NumOfImpRefs; z++) { printValue( MInst->getImplicitRef(z) ); cout << "\t"; } } } // for all machine instructions cout << endl; } // for all BBs cout << endl; } //---------------------------------------------------------------------------- // //---------------------------------------------------------------------------- void PhyRegAlloc::colorCallRetArgs() { CallRetInstrListType &CallRetInstList = LRI.getCallRetInstrList(); CallRetInstrListType::const_iterator It = CallRetInstList.begin(); for( ; It != CallRetInstList.end(); ++It ) { const MachineInstr *const CRMI = *It; unsigned OpCode = CRMI->getOpCode(); // get the added instructions for this Call/Ret instruciton AddedInstrns *AI = AddedInstrMap[ CRMI ]; if ( !AI ) { AI = new AddedInstrns(); AddedInstrMap[ CRMI ] = AI; } if( (TM.getInstrInfo()).isCall( OpCode ) ) MRI.colorCallArgs( CRMI, LRI, AI ); else if ( (TM.getInstrInfo()).isReturn(OpCode) ) MRI.colorRetValue( CRMI, LRI, AI ); else assert( 0 && "Non Call/Ret instrn in CallRetInstrList\n" ); } } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- void PhyRegAlloc::colorIncomingArgs() { const BasicBlock *const FirstBB = Meth->front(); const MachineInstr *FirstMI = *((FirstBB->getMachineInstrVec()).begin()); assert( FirstMI && "No machine instruction in entry BB"); AddedInstrns *AI = AddedInstrMap[ FirstMI ]; if ( !AI ) { AI = new AddedInstrns(); AddedInstrMap[ FirstMI ] = AI; } MRI.colorMethodArgs(Meth, LRI, AI ); } //---------------------------------------------------------------------------- // Used to generate a label for a basic block //---------------------------------------------------------------------------- void PhyRegAlloc::printLabel(const Value *const Val) { if( Val->hasName() ) cout << Val->getName(); else cout << "Label" << Val; } //---------------------------------------------------------------------------- // The entry pont to Register Allocation //---------------------------------------------------------------------------- void PhyRegAlloc::allocateRegisters() { // make sure that we put all register classes into the RegClassList // before we call constructLiveRanges (now done in the constructor of // PhyRegAlloc class). constructLiveRanges(); // create LR info if( DEBUG_RA ) LRI.printLiveRanges(); createIGNodeListsAndIGs(); // create IGNode list and IGs buildInterferenceGraphs(); // build IGs in all reg classes if( DEBUG_RA ) { // print all LRs in all reg classes for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->printIGNodeList(); // print IGs in all register classes for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->printIG(); } LRI.coalesceLRs(); // coalesce all live ranges if( DEBUG_RA) { // print all LRs in all reg classes for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->printIGNodeList(); // print IGs in all register classes for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->printIG(); } // color all register classes for( unsigned int rc=0; rc < NumOfRegClasses ; rc++) RegClassList[ rc ]->colorAllRegs(); // color incoming args and call args colorIncomingArgs(); colorCallRetArgs(); updateMachineCode(); if (DEBUG_RA) { PrintMachineInstructions(Meth); printMachineCode(); // only for DEBUGGING } }