//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// // // This file defines a simple peephole instruction selector for the x86 platform // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86InstrBuilder.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iOperators.h" #include "llvm/iOther.h" #include "llvm/iPHINode.h" #include "llvm/iMemory.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Target/MRegisterInfo.h" #include using namespace MOTy; // Get Use, Def, UseAndDef /// BMI - A special BuildMI variant that takes an iterator to insert the /// instruction at as well as a basic block. inline static MachineInstrBuilder BMI(MachineBasicBlock *BB, MachineBasicBlock::iterator &I, MachineOpCode Opcode, unsigned NumOperands, unsigned DestReg) { MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true); I = ++BB->insert(I, MI); return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def); } namespace { struct ISel : public FunctionPass, InstVisitor { TargetMachine &TM; MachineFunction *F; // The function we are compiling into MachineBasicBlock *BB; // The current MBB we are compiling unsigned CurReg; std::map RegMap; // Mapping between Val's and SSA Regs // MBBMap - Mapping between LLVM BB -> Machine BB std::map MBBMap; ISel(TargetMachine &tm) : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &Fn) { F = &MachineFunction::construct(&Fn, TM); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); // Instruction select everything except PHI nodes visit(Fn); // Select the PHI nodes SelectPHINodes(); RegMap.clear(); MBBMap.clear(); CurReg = MRegisterInfo::FirstVirtualRegister; F = 0; return false; // We never modify the LLVM itself. } /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MachineBasicBlock to emit code into /// and adds it to the current MachineFunction. Subsequent visit* for /// instructions will be invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = MBBMap[&LLVM_BB]; } /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, /// not the current one. /// void SelectPHINodes(); // Visitation methods for various instructions. These methods simply emit // fixed X86 code for each instruction. // // Control flow operators void visitReturnInst(ReturnInst &RI); void visitBranchInst(BranchInst &BI); void visitCallInst(CallInst &I); // Arithmetic operators void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } void doMultiply(unsigned destReg, const Type *resultType, unsigned op0Reg, unsigned op1Reg); void visitMul(BinaryOperator &B); void visitDiv(BinaryOperator &B) { visitDivRem(B); } void visitRem(BinaryOperator &B) { visitDivRem(B); } void visitDivRem(BinaryOperator &B); // Bitwise operators void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } // Binary comparison operators void visitSetCCInst(SetCondInst &I, unsigned OpNum); void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); } void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); } void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); } void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); } void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); } void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); } // Memory Instructions void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitMallocInst(MallocInst &I); void visitFreeInst(FreeInst &I); void visitAllocaInst(AllocaInst &I); // Other operators void visitShiftInst(ShiftInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass void visitCastInst(CastInst &I); void visitInstruction(Instruction &I) { std::cerr << "Cannot instruction select: " << I; abort(); } /// promote32 - Make a value 32-bits wide, and put it somewhere. void promote32 (const unsigned targetReg, Value *v); // emitGEPOperation - Common code shared between visitGetElementPtrInst and // constant expression GEP support. // void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg); /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(Constant *C, unsigned Reg, MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI); /// makeAnotherReg - This method returns the next register number /// we haven't yet used. unsigned makeAnotherReg(const Type *Ty) { // Add the mapping of regnumber => reg class to MachineFunction F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty)); return CurReg++; } /// getReg - This method turns an LLVM value into a register number. This /// is guaranteed to produce the same register number for a particular value /// every time it is queried. /// unsigned getReg(Value &V) { return getReg(&V); } // Allow references unsigned getReg(Value *V, MachineBasicBlock *BB = 0) { MachineBasicBlock::iterator IPt; if (BB == 0) { // Should we just append to the end of the current bb? BB = this->BB; IPt = BB->end(); } else { // Otherwise, insert before the branch or ret instr... IPt = BB->end()-1; } unsigned &Reg = RegMap[V]; if (Reg == 0) { Reg = makeAnotherReg(V->getType()); RegMap[V] = Reg; } // If this operand is a constant, emit the code to copy the constant into // the register here... // if (Constant *C = dyn_cast(V)) { copyConstantToRegister(C, Reg, BB, IPt); } else if (GlobalValue *GV = dyn_cast(V)) { // Move the address of the global into the register BMI(BB, IPt, X86::MOVir32, 1, Reg).addReg(GV); } else if (Argument *A = dyn_cast(V)) { // Find the position of the argument in the argument list. const Function *f = F->getFunction (); // The function's arguments look like this: // [EBP] -- copy of old EBP // [EBP + 4] -- return address // [EBP + 8] -- first argument (leftmost lexically) // So we want to start with counter = 2. int counter = 2, argPos = -1; for (Function::const_aiterator ai = f->abegin (), ae = f->aend (); ai != ae; ++ai) { if (&(*ai) == A) { argPos = counter; break; // Only need to find it once. ;-) } ++counter; } assert (argPos != -1 && "Argument not found in current function's argument list"); // Load it out of the stack frame at EBP + 4*argPos. addRegOffset(BMI(BB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos); } return Reg; } }; } /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 /// Representation. /// enum TypeClass { cByte, cShort, cInt, cLong, cFloat, cDouble }; /// getClass - Turn a primitive type into a "class" number which is based on the /// size of the type, and whether or not it is floating point. /// static inline TypeClass getClass(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::SByteTyID: case Type::UByteTyID: return cByte; // Byte operands are class #0 case Type::ShortTyID: case Type::UShortTyID: return cShort; // Short operands are class #1 case Type::IntTyID: case Type::UIntTyID: case Type::PointerTyID: return cInt; // Int's and pointers are class #2 case Type::LongTyID: case Type::ULongTyID: //return cLong; // Longs are class #3 return cInt; // FIXME: LONGS ARE TREATED AS INTS! case Type::FloatTyID: return cFloat; // Float is class #4 case Type::DoubleTyID: return cDouble; // Doubles are class #5 default: assert(0 && "Invalid type to getClass!"); return cByte; // not reached } } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void ISel::copyConstantToRegister(Constant *C, unsigned R, MachineBasicBlock *BB, MachineBasicBlock::iterator IP) { if (ConstantExpr *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::GetElementPtr) { emitGEPOperation(BB, IP, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), R); return; } std::cerr << "Offending expr: " << C << "\n"; assert (0 && "Constant expressions not yet handled!\n"); } if (C->getType()->isIntegral()) { unsigned Class = getClass(C->getType()); assert(Class != 3 && "Type not handled yet!"); static const unsigned IntegralOpcodeTab[] = { X86::MOVir8, X86::MOVir16, X86::MOVir32 }; if (C->getType()->isSigned()) { ConstantSInt *CSI = cast(C); BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue()); } else { ConstantUInt *CUI = cast(C); BMI(BB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue()); } } else if (isa (C)) { // Copy zero (null pointer) to the register. BMI(BB, IP, X86::MOVir32, 1, R).addZImm(0); } else if (ConstantPointerRef *CPR = dyn_cast(C)) { unsigned SrcReg = getReg(CPR->getValue()); BMI(BB, IP, X86::MOVrr32, 1, R).addReg(SrcReg); } else { std::cerr << "Offending constant: " << C << "\n"; assert(0 && "Type not handled yet!"); } } /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, not /// the current one. /// void ISel::SelectPHINodes() { const Function &LF = *F->getFunction(); // The LLVM function... for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { const BasicBlock *BB = I; MachineBasicBlock *MBB = MBBMap[I]; // Loop over all of the PHI nodes in the LLVM basic block... unsigned NumPHIs = 0; for (BasicBlock::const_iterator I = BB->begin(); PHINode *PN = (PHINode*)dyn_cast(&*I); ++I) { // Create a new machine instr PHI node, and insert it. MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN)); MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; // Get the incoming value into a virtual register. If it is not already // available in a virtual register, insert the computation code into // PredMBB MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB)); // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks... MI->addPCDispOperand(PN->getIncomingBlock(i)); // PredMBB } } } } /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized /// register, then move it to wherever the result should be. /// We handle FP setcc instructions by pushing them, doing a /// compare-and-pop-twice, and then copying the concodes to the main /// processor's concodes (I didn't make this up, it's in the Intel manual) /// void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) { // The arguments are already supposed to be of the same type. const Type *CompTy = I.getOperand(0)->getType(); unsigned reg1 = getReg(I.getOperand(0)); unsigned reg2 = getReg(I.getOperand(1)); unsigned Class = getClass(CompTy); switch (Class) { // Emit: cmp , (do the comparison). We can // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with // 32-bit. case cByte: BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2); break; case cShort: BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2); break; case cInt: BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2); break; // Push the variables on the stack with fldl opcodes. // FIXME: assuming var1, var2 are in memory, if not, spill to // stack first case cFloat: // Floats BuildMI (BB, X86::FLDr32, 1).addReg (reg1); BuildMI (BB, X86::FLDr32, 1).addReg (reg2); break; case cDouble: // Doubles BuildMI (BB, X86::FLDr64, 1).addReg (reg1); BuildMI (BB, X86::FLDr64, 1).addReg (reg2); break; case cLong: default: visitInstruction(I); } if (CompTy->isFloatingPoint()) { // (Non-trapping) compare and pop twice. BuildMI (BB, X86::FUCOMPP, 0); // Move fp status word (concodes) to ax. BuildMI (BB, X86::FNSTSWr8, 1, X86::AX); // Load real concodes from ax. BuildMI (BB, X86::SAHF, 1).addReg(X86::AH); } // Emit setOp instruction (extract concode; clobbers ax), // using the following mapping: // LLVM -> X86 signed X86 unsigned // ----- ----- ----- // seteq -> sete sete // setne -> setne setne // setlt -> setl setb // setgt -> setg seta // setle -> setle setbe // setge -> setge setae static const unsigned OpcodeTab[2][6] = { {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr}, {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr}, }; BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL); // Put it in the result using a move. BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL); } /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide /// operand, in the specified target register. void ISel::promote32 (unsigned targetReg, Value *v) { unsigned vReg = getReg (v); unsigned Class = getClass (v->getType ()); bool isUnsigned = v->getType ()->isUnsigned (); assert (((Class == cByte) || (Class == cShort) || (Class == cInt)) && "Unpromotable operand class in promote32"); switch (Class) { case cByte: // Extend value into target register (8->32) if (isUnsigned) BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg); else BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg); break; case cShort: // Extend value into target register (16->32) if (isUnsigned) BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg); else BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg); break; case cInt: // Move value into target register (32->32) BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg); break; } } /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, /// we have the following possibilities: /// /// ret void: No return value, simply emit a 'ret' instruction /// ret sbyte, ubyte : Extend value into EAX and return /// ret short, ushort: Extend value into EAX and return /// ret int, uint : Move value into EAX and return /// ret pointer : Move value into EAX and return /// ret long, ulong : Move value into EAX/EDX and return /// ret float/double : Top of FP stack /// void ISel::visitReturnInst (ReturnInst &I) { if (I.getNumOperands () == 0) { // Emit a 'ret' instruction BuildMI (BB, X86::RET, 0); return; } Value *rv = I.getOperand (0); unsigned Class = getClass (rv->getType ()); switch (Class) { // integral return values: extend or move into EAX and return. case cByte: case cShort: case cInt: promote32 (X86::EAX, rv); break; // ret float/double: top of FP stack // FLD case cFloat: // Floats BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv)); break; case cDouble: // Doubles BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv)); break; case cLong: // ret long: use EAX(least significant 32 bits)/EDX (most // significant 32)...uh, I think so Brain, but how do i call // up the two parts of the value from inside this mouse // cage? *zort* default: visitInstruction (I); } // Emit a 'ret' instruction BuildMI (BB, X86::RET, 0); } /// visitBranchInst - Handle conditional and unconditional branches here. Note /// that since code layout is frozen at this point, that if we are trying to /// jump to a block that is the immediate successor of the current block, we can /// just make a fall-through. (but we don't currently). /// void ISel::visitBranchInst (BranchInst & BI) { if (BI.isConditional ()) { BasicBlock *ifTrue = BI.getSuccessor (0); BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious // simplest thing I can think of: compare condition with zero, // followed by jump-if-equal to ifFalse, and jump-if-nonequal to // ifTrue unsigned int condReg = getReg (BI.getCondition ()); BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0); BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0)); BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1)); } else // unconditional branch { BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0)); } } /// visitCallInst - Push args on stack and do a procedure call instruction. void ISel::visitCallInst (CallInst & CI) { // keep a counter of how many bytes we pushed on the stack unsigned bytesPushed = 0; // Push the arguments on the stack in reverse order, as specified by // the ABI. for (unsigned i = CI.getNumOperands()-1; i >= 1; --i) { Value *v = CI.getOperand (i); switch (getClass (v->getType ())) { case cByte: case cShort: // Promote V to 32 bits wide, and move the result into EAX, // then push EAX. promote32 (X86::EAX, v); BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX); bytesPushed += 4; break; case cInt: case cFloat: { unsigned Reg = getReg(v); BuildMI (BB, X86::PUSHr32, 1).addReg(Reg); bytesPushed += 4; break; } default: // FIXME: long/ulong/double args not handled. visitInstruction (CI); break; } } // Emit a CALL instruction with PC-relative displacement. BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ()); // Adjust the stack by `bytesPushed' amount if non-zero if (bytesPushed > 0) BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed); // If there is a return value, scavenge the result from the location the call // leaves it in... // if (CI.getType() != Type::VoidTy) { unsigned resultTypeClass = getClass (CI.getType ()); switch (resultTypeClass) { case cByte: case cShort: case cInt: { // Integral results are in %eax, or the appropriate portion // thereof. static const unsigned regRegMove[] = { X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; BuildMI (BB, regRegMove[resultTypeClass], 1, getReg (CI)).addReg (AReg[resultTypeClass]); break; } case cFloat: // Floating-point return values live in %st(0) (i.e., the top of // the FP stack.) The general way to approach this is to do a // FSTP to save the top of the FP stack on the real stack, then // do a MOV to load the top of the real stack into the target // register. visitInstruction (CI); // FIXME: add the right args for the calls below // BuildMI (BB, X86::FSTPm32, 0); // BuildMI (BB, X86::MOVmr32, 0); break; default: std::cerr << "Cannot get return value for call of type '" << *CI.getType() << "'\n"; visitInstruction(CI); } } } /// visitSimpleBinary - Implement simple binary operators for integral types... /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, /// 4 for Xor. /// void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals visitInstruction(B); unsigned Class = getClass(B.getType()); if (Class > 2) // FIXME: Handle longs visitInstruction(B); static const unsigned OpcodeTab[][4] = { // Arithmetic operators { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB // Bitwise operators { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR }; unsigned Opcode = OpcodeTab[OperatorClass][Class]; unsigned Op0r = getReg(B.getOperand(0)); unsigned Op1r = getReg(B.getOperand(1)); BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r); } /// doMultiply - Emit appropriate instructions to multiply together /// the registers op0Reg and op1Reg, and put the result in destReg. /// The type of the result should be given as resultType. void ISel::doMultiply(unsigned destReg, const Type *resultType, unsigned op0Reg, unsigned op1Reg) { unsigned Class = getClass (resultType); // FIXME: assert (Class <= 2 && "Someday, we will learn how to multiply" "longs and floating-point numbers. This is not that day."); static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 }; static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; unsigned Reg = Regs[Class]; // Emit a MOV to put the first operand into the appropriately-sized // subreg of EAX. BuildMI (BB, MovOpcode[Class], 1, Reg).addReg (op0Reg); // Emit the appropriate multiply instruction. BuildMI (BB, MulOpcode[Class], 1).addReg (op1Reg); // Emit another MOV to put the result into the destination register. BuildMI (BB, MovOpcode[Class], 1, destReg).addReg (Reg); } /// visitMul - Multiplies are not simple binary operators because they must deal /// with the EAX register explicitly. /// void ISel::visitMul(BinaryOperator &I) { doMultiply (getReg (I), I.getType (), getReg (I.getOperand (0)), getReg (I.getOperand (1))); } /// visitDivRem - Handle division and remainder instructions... these /// instruction both require the same instructions to be generated, they just /// select the result from a different register. Note that both of these /// instructions work differently for signed and unsigned operands. /// void ISel::visitDivRem(BinaryOperator &I) { unsigned Class = getClass(I.getType()); if (Class > 2) // FIXME: Handle longs visitInstruction(I); static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ }; static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 }; static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; static const unsigned DivOpcode[][4] = { { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division }; bool isSigned = I.getType()->isSigned(); unsigned Reg = Regs[Class]; unsigned ExtReg = ExtRegs[Class]; unsigned Op0Reg = getReg(I.getOperand(0)); unsigned Op1Reg = getReg(I.getOperand(1)); // Put the first operand into one of the A registers... BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); if (isSigned) { // Emit a sign extension instruction... BuildMI(BB, ExtOpcode[Class], 0); } else { // If unsigned, emit a zeroing instruction... (reg = xor reg, reg) BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg); } // Emit the appropriate divide or remainder instruction... BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); // Figure out which register we want to pick the result out of... unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg; // Put the result into the destination register... BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg); } /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here /// for constant immediate shift values, and for constant immediate /// shift values equal to 1. Even the general case is sort of special, /// because the shift amount has to be in CL, not just any old register. /// void ISel::visitShiftInst (ShiftInst &I) { unsigned Op0r = getReg (I.getOperand(0)); unsigned DestReg = getReg(I); bool isLeftShift = I.getOpcode() == Instruction::Shl; bool isOperandSigned = I.getType()->isUnsigned(); unsigned OperandClass = getClass(I.getType()); if (OperandClass > 2) visitInstruction(I); // Can't handle longs yet! if (ConstantUInt *CUI = dyn_cast (I.getOperand (1))) { // The shift amount is constant, guaranteed to be a ubyte. Get its value. assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); unsigned char shAmt = CUI->getValue(); static const unsigned ConstantOperand[][4] = { { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL }; const unsigned *OpTab = // Figure out the operand table to use ConstantOperand[isLeftShift*2+isOperandSigned]; // Emit: reg, shamt (shift-by-immediate opcode "ir" form.) BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt); } else { // The shift amount is non-constant. // // In fact, you can only shift with a variable shift amount if // that amount is already in the CL register, so we have to put it // there first. // // Emit: move cl, shiftAmount (put the shift amount in CL.) BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1))); // This is a shift right (SHR). static const unsigned NonConstantOperand[][4] = { { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL }; const unsigned *OpTab = // Figure out the operand table to use NonConstantOperand[isLeftShift*2+isOperandSigned]; BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r); } } /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' /// instruction. /// void ISel::visitLoadInst(LoadInst &I) { unsigned Class = getClass(I.getType()); if (Class > 2) // FIXME: Handle longs and others... visitInstruction(I); static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 }; unsigned AddressReg = getReg(I.getOperand(0)); addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg); } /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' /// instruction. /// void ISel::visitStoreInst(StoreInst &I) { unsigned Class = getClass(I.getOperand(0)->getType()); if (Class > 2) // FIXME: Handle longs and others... visitInstruction(I); static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 }; unsigned ValReg = getReg(I.getOperand(0)); unsigned AddressReg = getReg(I.getOperand(1)); addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg); } /// visitCastInst - Here we have various kinds of copying with or without /// sign extension going on. void ISel::visitCastInst (CastInst &CI) { const Type *targetType = CI.getType (); Value *operand = CI.getOperand (0); unsigned int operandReg = getReg (operand); const Type *sourceType = operand->getType (); unsigned int destReg = getReg (CI); // // Currently we handle: // // 1) cast * to bool // // 2) cast {sbyte, ubyte} to {sbyte, ubyte} // cast {short, ushort} to {ushort, short} // cast {int, uint, ptr} to {int, uint, ptr} // // 3) cast {sbyte, ubyte} to {ushort, short} // cast {sbyte, ubyte} to {int, uint, ptr} // cast {short, ushort} to {int, uint, ptr} // // 4) cast {int, uint, ptr} to {short, ushort} // cast {int, uint, ptr} to {sbyte, ubyte} // cast {short, ushort} to {sbyte, ubyte} // // 1) Implement casts to bool by using compare on the operand followed // by set if not zero on the result. if (targetType == Type::BoolTy) { BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0); BuildMI (BB, X86::SETNEr, 1, destReg); return; } // 2) Implement casts between values of the same type class (as determined // by getClass) by using a register-to-register move. unsigned int srcClass = getClass (sourceType); unsigned int targClass = getClass (targetType); static const unsigned regRegMove[] = { X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass)) { BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg); return; } // 3) Handle cast of SMALLER int to LARGER int using a move with sign // extension or zero extension, depending on whether the source type // was signed. if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass)) { static const unsigned ops[] = { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16 }; unsigned srcSigned = sourceType->isSigned (); BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1, destReg).addReg (operandReg); return; } // 4) Handle cast of LARGER int to SMALLER int using a move to EAX // followed by a move out of AX or AL. if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass)) { static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; BuildMI (BB, regRegMove[srcClass], 1, AReg[srcClass]).addReg (operandReg); BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]); return; } // Anything we haven't handled already, we can't (yet) handle at all. // // FP to integral casts can be handled with FISTP to store onto the // stack while converting to integer, followed by a MOV to load from // the stack into the result register. Integral to FP casts can be // handled with MOV to store onto the stack, followed by a FILD to // load from the stack while converting to FP. For the moment, I // can't quite get straight in my head how to borrow myself some // stack space and write on it. Otherwise, this would be trivial. visitInstruction (CI); } /// visitGetElementPtrInst - I don't know, most programs don't have /// getelementptr instructions, right? That means we can put off /// implementing this, right? Right. This method emits machine /// instructions to perform type-safe pointer arithmetic. I am /// guessing this could be cleaned up somewhat to use fewer temporary /// registers. void ISel::visitGetElementPtrInst (GetElementPtrInst &I) { emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), getReg(I)); } void ISel::emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg) { const TargetData &TD = TM.getTargetData(); const Type *Ty = Src->getType(); unsigned basePtrReg = getReg(Src); // GEPs have zero or more indices; we must perform a struct access // or array access for each one. for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; ++oi) { Value *idx = *oi; unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy); if (const StructType *StTy = dyn_cast (Ty)) { // It's a struct access. idx is the index into the structure, // which names the field. This index must have ubyte type. const ConstantUInt *CUI = cast (idx); assert (CUI->getType () == Type::UByteTy && "Funny-looking structure index in GEP"); // Use the TargetData structure to pick out what the layout of // the structure is in memory. Since the structure index must // be constant, we can get its value and use it to find the // right byte offset from the StructLayout class's list of // structure member offsets. unsigned idxValue = CUI->getValue (); unsigned memberOffset = TD.getStructLayout (StTy)->MemberOffsets[idxValue]; // Emit an ADD to add memberOffset to the basePtr. BuildMI (BB, X86::ADDri32, 2, nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset); // The next type is the member of the structure selected by the // index. Ty = StTy->getElementTypes ()[idxValue]; } else if (const SequentialType *SqTy = cast (Ty)) { // It's an array or pointer access: [ArraySize x ElementType]. const Type *typeOfSequentialTypeIndex = SqTy->getIndexType (); // idx is the index into the array. Unlike with structure // indices, we may not know its actual value at code-generation // time. assert (idx->getType () == typeOfSequentialTypeIndex && "Funny-looking array index in GEP"); // We want to add basePtrReg to (idxReg * sizeof // ElementType). First, we must find the size of the pointed-to // type. (Not coincidentally, the next type is the type of the // elements in the array.) Ty = SqTy->getElementType (); unsigned elementSize = TD.getTypeSize (Ty); unsigned elementSizeReg = makeAnotherReg(Type::UIntTy); copyConstantToRegister(ConstantInt::get(typeOfSequentialTypeIndex, elementSize), elementSizeReg, BB, BB->end()); unsigned idxReg = getReg (idx); // Emit a MUL to multiply the register holding the index by // elementSize, putting the result in memberOffsetReg. unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy); doMultiply (memberOffsetReg, typeOfSequentialTypeIndex, elementSizeReg, idxReg); // Emit an ADD to add memberOffsetReg to the basePtr. BuildMI (BB, X86::ADDrr32, 2, nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg); } // Now that we are here, further indices refer to subtypes of this // one, so we don't need to worry about basePtrReg itself, anymore. basePtrReg = nextBasePtrReg; } // After we have processed all the indices, the result is left in // basePtrReg. Move it to the register where we were expected to // put the answer. A 32-bit move should do it, because we are in // ILP32 land. BuildMI (BB, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg); } /// visitMallocInst - I know that personally, whenever I want to remember /// something, I have to clear off some space in my brain. void ISel::visitMallocInst (MallocInst &I) { // We assume that by this point, malloc instructions have been // lowered to calls, and dlsym will magically find malloc for us. // So we do not want to see malloc instructions here. visitInstruction (I); } /// visitFreeInst - same story as MallocInst void ISel::visitFreeInst (FreeInst &I) { // We assume that by this point, free instructions have been // lowered to calls, and dlsym will magically find free for us. // So we do not want to see free instructions here. visitInstruction (I); } /// visitAllocaInst - I want some stack space. Come on, man, I said I /// want some freakin' stack space. void ISel::visitAllocaInst (AllocaInst &I) { // Find the data size of the alloca inst's getAllocatedType. const Type *allocatedType = I.getAllocatedType (); const TargetData &TD = TM.DataLayout; unsigned allocatedTypeSize = TD.getTypeSize (allocatedType); // Keep stack 32-bit aligned. unsigned int allocatedTypeWords = allocatedTypeSize / 4; if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; } // Subtract size from stack pointer, thereby allocating some space. BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4); // Put a pointer to the space into the result register, by copying // the stack pointer. BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP); } /// createSimpleX86InstructionSelector - This pass converts an LLVM function /// into a machine code representation is a very simple peep-hole fashion. The /// generated code sucks but the implementation is nice and simple. /// Pass *createSimpleX86InstructionSelector(TargetMachine &TM) { return new ISel(TM); }