//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// // // The LLVM Compiler Infrastructure // // This file was developed by the Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DAG pattern matching instruction selector for X86, // converting from a legalized dag to a X86 dag. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-isel" #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Support/CFG.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; STATISTIC(NumFPKill , "Number of FP_REG_KILL instructions added"); STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// namespace { /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses /// SDOperand's instead of register numbers for the leaves of the matched /// tree. struct X86ISelAddressMode { enum { RegBase, FrameIndexBase } BaseType; struct { // This is really a union, discriminated by BaseType! SDOperand Reg; int FrameIndex; } Base; bool isRIPRel; // RIP relative? unsigned Scale; SDOperand IndexReg; unsigned Disp; GlobalValue *GV; Constant *CP; const char *ES; int JT; unsigned Align; // CP alignment. X86ISelAddressMode() : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0), GV(0), CP(0), ES(0), JT(-1), Align(0) { } }; } namespace { //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. /// class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel { /// ContainsFPCode - Every instruction we select that uses or defines a FP /// register should set this to true. bool ContainsFPCode; /// FastISel - Enable fast(er) instruction selection. /// bool FastISel; /// TM - Keep a reference to X86TargetMachine. /// X86TargetMachine &TM; /// X86Lowering - This object fully describes how to lower LLVM code to an /// X86-specific SelectionDAG. X86TargetLowering X86Lowering; /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; /// GlobalBaseReg - keeps track of the virtual register mapped onto global /// base register. unsigned GlobalBaseReg; public: X86DAGToDAGISel(X86TargetMachine &tm, bool fast) : SelectionDAGISel(X86Lowering), ContainsFPCode(false), FastISel(fast), TM(tm), X86Lowering(*TM.getTargetLowering()), Subtarget(&TM.getSubtarget()) {} virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; return SelectionDAGISel::runOnFunction(Fn); } virtual const char *getPassName() const { return "X86 DAG->DAG Instruction Selection"; } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root); // Include the pieces autogenerated from the target description. #include "X86GenDAGISel.inc" private: SDNode *Select(SDOperand N); bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true); bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp, SDOperand &InChain, SDOperand &OutChain); bool TryFoldLoad(SDOperand P, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); void InstructionSelectPreprocess(SelectionDAG &DAG); /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode, std::vector &OutOps, SelectionDAG &DAG); void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : AM.Base.Reg; Scale = getI8Imm(AM.Scale); Index = AM.IndexReg; // These are 32-bit even in 64-bit mode since RIP relative offset // is 32-bit. if (AM.GV) Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp); else if (AM.CP) Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp); else if (AM.ES) Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32); else if (AM.JT != -1) Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32); else Disp = getI32Imm(AM.Disp); } /// getI8Imm - Return a target constant with the specified value, of type /// i8. inline SDOperand getI8Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i8); } /// getI16Imm - Return a target constant with the specified value, of type /// i16. inline SDOperand getI16Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i16); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDOperand getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDNode *getGlobalBaseReg(); #ifndef NDEBUG unsigned Indent; #endif }; } static SDNode *findFlagUse(SDNode *N) { unsigned FlagResNo = N->getNumValues()-1; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { SDOperand Op = User->getOperand(i); if (Op.Val == N && Op.ResNo == FlagResNo) return User; } } return NULL; } static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, SDNode *Root, SDNode *Skip, bool &found, std::set &Visited) { if (found || Use->getNodeId() > Def->getNodeId() || !Visited.insert(Use).second) return; for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) { SDNode *N = Use->getOperand(i).Val; if (N == Skip) continue; if (N == Def) { if (Use == ImmedUse) continue; // Immediate use is ok. if (Use == Root) { assert(Use->getOpcode() == ISD::STORE || Use->getOpcode() == X86ISD::CMP); continue; } found = true; break; } findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited); } } /// isNonImmUse - Start searching from Root up the DAG to check is Def can /// be reached. Return true if that's the case. However, ignore direct uses /// by ImmedUse (which would be U in the example illustrated in /// CanBeFoldedBy) and by Root (which can happen in the store case). /// FIXME: to be really generic, we should allow direct use by any node /// that is being folded. But realisticly since we only fold loads which /// have one non-chain use, we only need to watch out for load/op/store /// and load/op/cmp case where the root (store / cmp) may reach the load via /// its chain operand. static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, SDNode *Skip = NULL) { std::set Visited; bool found = false; findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited); return found; } bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) { if (FastISel) return false; // If U use can somehow reach N through another path then U can't fold N or // it will create a cycle. e.g. In the following diagram, U can reach N // through X. If N is folded into into U, then X is both a predecessor and // a successor of U. // // [ N ] // ^ ^ // | | // / \--- // / [X] // | ^ // [U]--------| if (isNonImmUse(Root, N, U)) return false; // If U produces a flag, then it gets (even more) interesting. Since it // would have been "glued" together with its flag use, we need to check if // it might reach N: // // [ N ] // ^ ^ // | | // [U] \-- // ^ [TF] // | ^ // | | // \ / // [FU] // // If FU (flag use) indirectly reach N (the load), and U fold N (call it // NU), then TF is a predecessor of FU and a successor of NU. But since // NU and FU are flagged together, this effectively creates a cycle. bool HasFlagUse = false; MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1); while ((VT == MVT::Flag && !Root->use_empty())) { SDNode *FU = findFlagUse(Root); if (FU == NULL) break; else { Root = FU; HasFlagUse = true; } VT = Root->getValueType(Root->getNumValues()-1); } if (HasFlagUse) return !isNonImmUse(Root, N, Root, U); return true; } /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand /// and move load below the TokenFactor. Replace store's chain operand with /// load's chain result. static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load, SDOperand Store, SDOperand TF) { std::vector Ops; for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i) if (Load.Val == TF.Val->getOperand(i).Val) Ops.push_back(Load.Val->getOperand(0)); else Ops.push_back(TF.Val->getOperand(i)); DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size()); DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2)); DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1), Store.getOperand(2), Store.getOperand(3)); } /// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction /// selector to pick more load-modify-store instructions. This is a common /// case: /// /// [Load chain] /// ^ /// | /// [Load] /// ^ ^ /// | | /// / \- /// / | /// [TokenFactor] [Op] /// ^ ^ /// | | /// \ / /// \ / /// [Store] /// /// The fact the store's chain operand != load's chain will prevent the /// (store (op (load))) instruction from being selected. We can transform it to: /// /// [Load chain] /// ^ /// | /// [TokenFactor] /// ^ /// | /// [Load] /// ^ ^ /// | | /// | \- /// | | /// | [Op] /// | ^ /// | | /// \ / /// \ / /// [Store] void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) { for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) { if (!ISD::isNON_TRUNCStore(I)) continue; SDOperand Chain = I->getOperand(0); if (Chain.Val->getOpcode() != ISD::TokenFactor) continue; SDOperand N1 = I->getOperand(1); SDOperand N2 = I->getOperand(2); if (MVT::isFloatingPoint(N1.getValueType()) || MVT::isVector(N1.getValueType()) || !N1.hasOneUse()) continue; bool RModW = false; SDOperand Load; unsigned Opcode = N1.Val->getOpcode(); switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADDC: case ISD::ADDE: { SDOperand N10 = N1.getOperand(0); SDOperand N11 = N1.getOperand(1); if (ISD::isNON_EXTLoad(N10.Val)) RModW = true; else if (ISD::isNON_EXTLoad(N11.Val)) { RModW = true; std::swap(N10, N11); } RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() && (N10.getOperand(1) == N2) && (N10.Val->getValueType(0) == N1.getValueType()); if (RModW) Load = N10; break; } case ISD::SUB: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: case ISD::SUBC: case ISD::SUBE: case X86ISD::SHLD: case X86ISD::SHRD: { SDOperand N10 = N1.getOperand(0); if (ISD::isNON_EXTLoad(N10.Val)) RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() && (N10.getOperand(1) == N2) && (N10.Val->getValueType(0) == N1.getValueType()); if (RModW) Load = N10; break; } } if (RModW) { MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain); ++NumLoadMoved; } } } /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel /// when it has created a SelectionDAG for us to codegen. void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); MachineFunction::iterator FirstMBB = BB; if (!FastISel) InstructionSelectPreprocess(DAG); // Codegen the basic block. #ifndef NDEBUG DOUT << "===== Instruction selection begins:\n"; Indent = 0; #endif DAG.setRoot(SelectRoot(DAG.getRoot())); #ifndef NDEBUG DOUT << "===== Instruction selection ends:\n"; #endif DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); // If we are emitting FP stack code, scan the basic block to determine if this // block defines any FP values. If so, put an FP_REG_KILL instruction before // the terminator of the block. if (!Subtarget->hasSSE2()) { // Note that FP stack instructions *are* used in SSE code when returning // values, but these are not live out of the basic block, so we don't need // an FP_REG_KILL in this case either. bool ContainsFPCode = false; // Scan all of the machine instructions in these MBBs, checking for FP // stores. MachineFunction::iterator MBBI = FirstMBB; do { for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end(); !ContainsFPCode && I != E; ++I) { for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) { if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() && MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) && RegMap->getRegClass(I->getOperand(0).getReg()) == X86::RFPRegisterClass) { ContainsFPCode = true; break; } } } } while (!ContainsFPCode && &*(MBBI++) != BB); // Check PHI nodes in successor blocks. These PHI's will be lowered to have // a copy of the input value in this block. if (!ContainsFPCode) { // Final check, check LLVM BB's that are successors to the LLVM BB // corresponding to BB for FP PHI nodes. const BasicBlock *LLVMBB = BB->getBasicBlock(); const PHINode *PN; for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); !ContainsFPCode && SI != E; ++SI) { for (BasicBlock::const_iterator II = SI->begin(); (PN = dyn_cast(II)); ++II) { if (PN->getType()->isFloatingPoint()) { ContainsFPCode = true; break; } } } } // Finally, if we found any FP code, emit the FP_REG_KILL instruction. if (ContainsFPCode) { BuildMI(*BB, BB->getFirstTerminator(), TM.getInstrInfo()->get(X86::FP_REG_KILL)); ++NumFPKill; } } } /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in /// the main function. void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI) { const TargetInstrInfo *TII = TM.getInstrInfo(); if (Subtarget->isTargetCygMing()) BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main"); // Switch the FPU to 64-bit precision mode for better compatibility and speed. int CWFrameIdx = MFI->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); // Set the high part to be 64-bit precision. addFrameReference(BuildMI(BB, TII->get(X86::MOV8mi)), CWFrameIdx, 1).addImm(2); // Reload the modified control word now. addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); } void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { // If this is main, emit special code for main. MachineBasicBlock *BB = MF.begin(); if (Fn.hasExternalLinkage() && Fn.getName() == "main") EmitSpecialCodeForMain(BB, MF.getFrameInfo()); } /// MatchAddress - Add the specified node to the specified addressing mode, /// returning true if it cannot be done. This just pattern matches for the /// addressing mode bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot) { // RIP relative addressing: %rip + 32-bit displacement! if (AM.isRIPRel) { if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) { int64_t Val = cast(N)->getSignExtended(); if (isInt32(AM.Disp + Val)) { AM.Disp += Val; return false; } } return true; } int id = N.Val->getNodeId(); bool Available = isSelected(id); switch (N.getOpcode()) { default: break; case ISD::Constant: { int64_t Val = cast(N)->getSignExtended(); if (isInt32(AM.Disp + Val)) { AM.Disp += Val; return false; } break; } case X86ISD::Wrapper: { bool is64Bit = Subtarget->is64Bit(); // Under X86-64 non-small code model, GV (and friends) are 64-bits. if (is64Bit && TM.getCodeModel() != CodeModel::Small) break; if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1) break; // If value is available in a register both base and index components have // been picked, we can't fit the result available in the register in the // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement. if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) { bool isStatic = TM.getRelocationModel() == Reloc::Static; SDOperand N0 = N.getOperand(0); if (GlobalAddressSDNode *G = dyn_cast(N0)) { GlobalValue *GV = G->getGlobal(); bool isAbs32 = !is64Bit || isStatic; if (isAbs32 || isRoot) { AM.GV = GV; AM.Disp += G->getOffset(); AM.isRIPRel = !isAbs32; return false; } } else if (ConstantPoolSDNode *CP = dyn_cast(N0)) { if (!is64Bit || isStatic || isRoot) { AM.CP = CP->getConstVal(); AM.Align = CP->getAlignment(); AM.Disp += CP->getOffset(); AM.isRIPRel = !isStatic; return false; } } else if (ExternalSymbolSDNode *S =dyn_cast(N0)) { if (isStatic || isRoot) { AM.ES = S->getSymbol(); AM.isRIPRel = !isStatic; return false; } } else if (JumpTableSDNode *J = dyn_cast(N0)) { if (isStatic || isRoot) { AM.JT = J->getIndex(); AM.isRIPRel = !isStatic; return false; } } } break; } case ISD::FrameIndex: if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { AM.BaseType = X86ISelAddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::SHL: if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) { unsigned Val = CN->getValue(); if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDOperand ShVal = N.Val->getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && isa(ShVal.Val->getOperand(1))) { AM.IndexReg = ShVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(ShVal.Val->getOperand(1)); uint64_t Disp = AM.Disp + (AddVal->getValue() << Val); if (isInt32(Disp)) AM.Disp = Disp; else AM.IndexReg = ShVal; } else { AM.IndexReg = ShVal; } return false; } } break; case ISD::MUL: // X*[3,5,9] -> X+X*[2,4,8] if (!Available && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0 && AM.IndexReg.Val == 0) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { AM.Scale = unsigned(CN->getValue())-1; SDOperand MulVal = N.Val->getOperand(0); SDOperand Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && isa(MulVal.Val->getOperand(1))) { Reg = MulVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(MulVal.Val->getOperand(1)); uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue(); if (isInt32(Disp)) AM.Disp = Disp; else Reg = N.Val->getOperand(0); } else { Reg = N.Val->getOperand(0); } AM.IndexReg = AM.Base.Reg = Reg; return false; } break; case ISD::ADD: { if (!Available) { X86ISelAddressMode Backup = AM; if (!MatchAddress(N.Val->getOperand(0), AM, false) && !MatchAddress(N.Val->getOperand(1), AM, false)) return false; AM = Backup; if (!MatchAddress(N.Val->getOperand(1), AM, false) && !MatchAddress(N.Val->getOperand(0), AM, false)) return false; AM = Backup; } break; } case ISD::OR: { if (!Available) { X86ISelAddressMode Backup = AM; // Look for (x << c1) | c2 where (c2 < c1) ConstantSDNode *CN = dyn_cast(N.Val->getOperand(0)); if (CN && !MatchAddress(N.Val->getOperand(1), AM, false)) { if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) { AM.Disp = CN->getValue(); return false; } } AM = Backup; CN = dyn_cast(N.Val->getOperand(1)); if (CN && !MatchAddress(N.Val->getOperand(0), AM, false)) { if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) { AM.Disp = CN->getValue(); return false; } } AM = Backup; } break; } } // Is the base register already occupied? if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { // If so, check to see if the scale index register is set. if (AM.IndexReg.Val == 0) { AM.IndexReg = N; AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86ISelAddressMode::RegBase; AM.Base.Reg = N; return false; } /// SelectAddr - returns true if it is able pattern match an addressing mode. /// It returns the operands which make up the maximal addressing mode it can /// match by reference. bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { X86ISelAddressMode AM; if (MatchAddress(N, AM)) return false; MVT::ValueType VT = N.getValueType(); if (AM.BaseType == X86ISelAddressMode::RegBase) { if (!AM.Base.Reg.Val) AM.Base.Reg = CurDAG->getRegister(0, VT); } if (!AM.IndexReg.Val) AM.IndexReg = CurDAG->getRegister(0, VT); getAddressOperands(AM, Base, Scale, Index, Disp); return true; } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. static inline bool isZeroNode(SDOperand Elt) { return ((isa(Elt) && cast(Elt)->getValue() == 0) || (isa(Elt) && cast(Elt)->isExactlyValue(0.0))); } /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to /// match a load whose top elements are either undef or zeros. The load flavor /// is derived from the type of N, which is either v4f32 or v2f64. bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp, SDOperand &InChain, SDOperand &OutChain) { if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { InChain = N.getOperand(0).getValue(1); if (ISD::isNON_EXTLoad(InChain.Val) && InChain.getValue(0).hasOneUse() && N.hasOneUse() && CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) { LoadSDNode *LD = cast(InChain); if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp)) return false; OutChain = LD->getChain(); return true; } } // Also handle the case where we explicitly require zeros in the top // elements. This is a vector shuffle from the zero vector. if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() && N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR && N.getOperand(1).Val->hasOneUse() && ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) && N.getOperand(1).getOperand(0).hasOneUse()) { // Check to see if the BUILD_VECTOR is building a zero vector. SDOperand BV = N.getOperand(0); for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i) if (!isZeroNode(BV.getOperand(i)) && BV.getOperand(i).getOpcode() != ISD::UNDEF) return false; // Not a zero/undef vector. // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something // from the LHS. unsigned VecWidth = BV.getNumOperands(); SDOperand ShufMask = N.getOperand(2); assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!"); if (ConstantSDNode *C = dyn_cast(ShufMask.getOperand(0))) { if (C->getValue() == VecWidth) { for (unsigned i = 1; i != VecWidth; ++i) { if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) { // ok. } else { ConstantSDNode *C = cast(ShufMask.getOperand(i)); if (C->getValue() >= VecWidth) return false; } } } // Okay, this is a zero extending load. Fold it. LoadSDNode *LD = cast(N.getOperand(1).getOperand(0)); if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp)) return false; OutChain = LD->getChain(); InChain = SDOperand(LD, 1); return true; } } return false; } /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing /// mode it matches can be cost effectively emitted as an LEA instruction. bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { X86ISelAddressMode AM; if (MatchAddress(N, AM)) return false; MVT::ValueType VT = N.getValueType(); unsigned Complexity = 0; if (AM.BaseType == X86ISelAddressMode::RegBase) if (AM.Base.Reg.Val) Complexity = 1; else AM.Base.Reg = CurDAG->getRegister(0, VT); else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) Complexity = 4; if (AM.IndexReg.Val) Complexity++; else AM.IndexReg = CurDAG->getRegister(0, VT); if (AM.Scale > 2) Complexity += 2; // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg else if (AM.Scale > 1) Complexity++; // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA // to a LEA. This is determined with some expermentation but is by no means // optimal (especially for code size consideration). LEA is nice because of // its three-address nature. Tweak the cost function again when we can run // convertToThreeAddress() at register allocation time. if (AM.GV || AM.CP || AM.ES || AM.JT != -1) { // For X86-64, we should always use lea to materialize RIP relative // addresses. if (Subtarget->is64Bit()) Complexity = 4; else Complexity += 2; } if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val)) Complexity++; if (Complexity > 2) { getAddressOperands(AM, Base, Scale, Index, Disp); return true; } return false; } bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { if (ISD::isNON_EXTLoad(N.Val) && N.hasOneUse() && CanBeFoldedBy(N.Val, P.Val, P.Val)) return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp); return false; } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDNode *X86DAGToDAGISel::getGlobalBaseReg() { assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing"); if (!GlobalBaseReg) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); SSARegMap *RegMap = BB->getParent()->getSSARegMap(); unsigned PC = RegMap->createVirtualRegister(X86::GR32RegisterClass); const TargetInstrInfo *TII = TM.getInstrInfo(); BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack)); BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), PC); // If we're using vanilla 'GOT' PIC style, we should use relative addressing // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external if (TM.getRelocationModel() == Reloc::PIC_ && Subtarget->isPICStyleGOT()) { GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass); BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg). addReg(PC). addExternalSymbol("_GLOBAL_OFFSET_TABLE_"); } else { GlobalBaseReg = PC; } } return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val; } static SDNode *FindCallStartFromCall(SDNode *Node) { if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; assert(Node->getOperand(0).getValueType() == MVT::Other && "Node doesn't have a token chain argument!"); return FindCallStartFromCall(Node->getOperand(0).Val); } SDNode *X86DAGToDAGISel::Select(SDOperand N) { SDNode *Node = N.Val; MVT::ValueType NVT = Node->getValueType(0); unsigned Opc, MOpc; unsigned Opcode = Node->getOpcode(); #ifndef NDEBUG DOUT << std::string(Indent, ' ') << "Selecting: "; DEBUG(Node->dump(CurDAG)); DOUT << "\n"; Indent += 2; #endif if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) { #ifndef NDEBUG DOUT << std::string(Indent-2, ' ') << "== "; DEBUG(Node->dump(CurDAG)); DOUT << "\n"; Indent -= 2; #endif return NULL; // Already selected. } switch (Opcode) { default: break; case X86ISD::GlobalBaseReg: return getGlobalBaseReg(); case ISD::ADD: { // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd // code and is matched first so to prevent it from being turned into // LEA32r X+c. // In 64-bit mode, use LEA to take advantage of RIP-relative addressing. MVT::ValueType PtrVT = TLI.getPointerTy(); SDOperand N0 = N.getOperand(0); SDOperand N1 = N.getOperand(1); if (N.Val->getValueType(0) == PtrVT && N0.getOpcode() == X86ISD::Wrapper && N1.getOpcode() == ISD::Constant) { unsigned Offset = (unsigned)cast(N1)->getValue(); SDOperand C(0, 0); // TODO: handle ExternalSymbolSDNode. if (GlobalAddressSDNode *G = dyn_cast(N0.getOperand(0))) { C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT, G->getOffset() + Offset); } else if (ConstantPoolSDNode *CP = dyn_cast(N0.getOperand(0))) { C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset()+Offset); } if (C.Val) { if (Subtarget->is64Bit()) { SDOperand Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1), CurDAG->getRegister(0, PtrVT), C }; return CurDAG->SelectNodeTo(N.Val, X86::LEA64r, MVT::i64, Ops, 4); } else return CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, PtrVT, C); } } // Other cases are handled by auto-generated code. break; } case ISD::MULHU: case ISD::MULHS: { if (Opcode == ISD::MULHU) switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; } else switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; } unsigned LoReg, HiReg; switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; } SDOperand N0 = Node->getOperand(0); SDOperand N1 = Node->getOperand(1); bool foldedLoad = false; SDOperand Tmp0, Tmp1, Tmp2, Tmp3; foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); // MULHU and MULHS are commmutative if (!foldedLoad) { foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3); if (foldedLoad) { N0 = Node->getOperand(1); N1 = Node->getOperand(0); } } SDOperand Chain; if (foldedLoad) { Chain = N1.getOperand(0); AddToISelQueue(Chain); } else Chain = CurDAG->getEntryNode(); SDOperand InFlag(0, 0); AddToISelQueue(N0); Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT), N0, InFlag); InFlag = Chain.getValue(1); if (foldedLoad) { AddToISelQueue(Tmp0); AddToISelQueue(Tmp1); AddToISelQueue(Tmp2); AddToISelQueue(Tmp3); SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag }; SDNode *CNode = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6); Chain = SDOperand(CNode, 0); InFlag = SDOperand(CNode, 1); } else { AddToISelQueue(N1); InFlag = SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); } SDOperand Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag); ReplaceUses(N.getValue(0), Result); if (foldedLoad) ReplaceUses(N1.getValue(1), Result.getValue(1)); #ifndef NDEBUG DOUT << std::string(Indent-2, ' ') << "=> "; DEBUG(Result.Val->dump(CurDAG)); DOUT << "\n"; Indent -= 2; #endif return NULL; } case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM; bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV; if (!isSigned) switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; } else switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; } unsigned LoReg, HiReg; unsigned ClrOpcode, SExtOpcode; switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; ClrOpcode = 0; SExtOpcode = X86::CBW; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; ClrOpcode = X86::MOV16r0; SExtOpcode = X86::CWD; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; ClrOpcode = X86::MOV32r0; SExtOpcode = X86::CDQ; break; case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; ClrOpcode = X86::MOV64r0; SExtOpcode = X86::CQO; break; } SDOperand N0 = Node->getOperand(0); SDOperand N1 = Node->getOperand(1); SDOperand InFlag(0, 0); if (NVT == MVT::i8 && !isSigned) { // Special case for div8, just use a move with zero extension to AX to // clear the upper 8 bits (AH). SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain; if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) { SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) }; AddToISelQueue(N0.getOperand(0)); AddToISelQueue(Tmp0); AddToISelQueue(Tmp1); AddToISelQueue(Tmp2); AddToISelQueue(Tmp3); Move = SDOperand(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other, Ops, 5), 0); Chain = Move.getValue(1); ReplaceUses(N0.getValue(1), Chain); } else { AddToISelQueue(N0); Move = SDOperand(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0); Chain = CurDAG->getEntryNode(); } Chain = CurDAG->getCopyToReg(Chain, X86::AX, Move, InFlag); InFlag = Chain.getValue(1); } else { AddToISelQueue(N0); InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg, N0, InFlag).getValue(1); if (isSigned) { // Sign extend the low part into the high part. InFlag = SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0); } else { // Zero out the high part, effectively zero extending the input. SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0); InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg, ClrNode, InFlag).getValue(1); } } SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Chain; bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); if (foldedLoad) { AddToISelQueue(N1.getOperand(0)); AddToISelQueue(Tmp0); AddToISelQueue(Tmp1); AddToISelQueue(Tmp2); AddToISelQueue(Tmp3); SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag }; SDNode *CNode = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6); Chain = SDOperand(CNode, 0); InFlag = SDOperand(CNode, 1); } else { AddToISelQueue(N1); Chain = CurDAG->getEntryNode(); InFlag = SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); } SDOperand Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg, NVT, InFlag); ReplaceUses(N.getValue(0), Result); if (foldedLoad) ReplaceUses(N1.getValue(1), Result.getValue(1)); #ifndef NDEBUG DOUT << std::string(Indent-2, ' ') << "=> "; DEBUG(Result.Val->dump(CurDAG)); DOUT << "\n"; Indent -= 2; #endif return NULL; } case ISD::TRUNCATE: { if (!Subtarget->is64Bit() && NVT == MVT::i8) { unsigned Opc2; MVT::ValueType VT; switch (Node->getOperand(0).getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i16: Opc = X86::MOV16to16_; VT = MVT::i16; Opc2 = X86::TRUNC_16_to8; break; case MVT::i32: Opc = X86::MOV32to32_; VT = MVT::i32; Opc2 = X86::TRUNC_32_to8; break; } AddToISelQueue(Node->getOperand(0)); SDOperand Tmp = SDOperand(CurDAG->getTargetNode(Opc, VT, Node->getOperand(0)), 0); SDNode *ResNode = CurDAG->getTargetNode(Opc2, NVT, Tmp); #ifndef NDEBUG DOUT << std::string(Indent-2, ' ') << "=> "; DEBUG(ResNode->dump(CurDAG)); DOUT << "\n"; Indent -= 2; #endif return ResNode; } break; } } SDNode *ResNode = SelectCode(N); #ifndef NDEBUG DOUT << std::string(Indent-2, ' ') << "=> "; if (ResNode == NULL || ResNode == N.Val) DEBUG(N.Val->dump(CurDAG)); else DEBUG(ResNode->dump(CurDAG)); DOUT << "\n"; Indent -= 2; #endif return ResNode; } bool X86DAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode, std::vector &OutOps, SelectionDAG &DAG){ SDOperand Op0, Op1, Op2, Op3; switch (ConstraintCode) { case 'o': // offsetable ?? case 'v': // not offsetable ?? default: return true; case 'm': // memory if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3)) return true; break; } OutOps.push_back(Op0); OutOps.push_back(Op1); OutOps.push_back(Op2); OutOps.push_back(Op3); AddToISelQueue(Op0); AddToISelQueue(Op1); AddToISelQueue(Op2); AddToISelQueue(Op3); return false; } /// createX86ISelDag - This pass converts a legalized DAG into a /// X86-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) { return new X86DAGToDAGISel(TM, Fast); }