llvm-6502/lib/Target/X86/X86ISelDAGToDAG.cpp
2005-11-30 02:51:20 +00:00

453 lines
15 KiB
C++

//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86Subtarget.h"
#include "X86ISelLowering.h"
#include "llvm/GlobalValue.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Pattern Matcher Implementation
//===----------------------------------------------------------------------===//
namespace {
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
/// SDOperand's instead of register numbers for the leaves of the matched
/// tree.
struct X86ISelAddressMode {
enum {
RegBase,
FrameIndexBase,
} BaseType;
struct { // This is really a union, discriminated by BaseType!
SDOperand Reg;
int FrameIndex;
} Base;
unsigned Scale;
SDOperand IndexReg;
unsigned Disp;
GlobalValue *GV;
X86ISelAddressMode()
: BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0) {
}
};
}
namespace {
Statistic<>
NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
//===--------------------------------------------------------------------===//
/// ISel - X86 specific code to select X86 machine instructions for
/// SelectionDAG operations.
///
class X86DAGToDAGISel : public SelectionDAGISel {
/// ContainsFPCode - Every instruction we select that uses or defines a FP
/// register should set this to true.
bool ContainsFPCode;
/// X86Lowering - This object fully describes how to lower LLVM code to an
/// X86-specific SelectionDAG.
X86TargetLowering X86Lowering;
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
public:
X86DAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(X86Lowering), X86Lowering(TM) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
}
virtual const char *getPassName() const {
return "X86 DAG->DAG Instruction Selection";
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"
private:
SDOperand Select(SDOperand N);
void SelectAddress(SDOperand N, X86ISelAddressMode &AM);
bool MatchAddress(SDOperand N, X86ISelAddressMode &AM);
/// getI8Imm - Return a target constant with the specified value, of type
/// i8.
inline SDOperand getI8Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i8);
}
/// getI16Imm - Return a target constant with the specified value, of type
/// i16.
inline SDOperand getI16Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i16);
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
};
}
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
/// when it has created a SelectionDAG for us to codegen.
void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Codegen the basic block.
DAG.setRoot(Select(DAG.getRoot()));
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
/// SelectAddress - Pattern match the maximal addressing mode for this node.
void X86DAGToDAGISel::SelectAddress(SDOperand N, X86ISelAddressMode &AM) {
MatchAddress(N, AM);
if (AM.BaseType == X86ISelAddressMode::RegBase && !AM.Base.Reg.Val) {
AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
} else {
AM.Base.Reg = Select(AM.Base.Reg);
}
if (!AM.IndexReg.Val) {
AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
} else {
AM.IndexReg = Select(AM.IndexReg);
}
}
/// FIXME: copied from X86ISelPattern.cpp
/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done. This just pattern matches for the
/// addressing mode
bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) {
switch (N.getOpcode()) {
default: break;
case ISD::FrameIndex:
if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
return false;
}
break;
case ISD::GlobalAddress:
if (AM.GV == 0) {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
// For Darwin, external and weak symbols are indirect, so we want to load
// the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address,
// not the GV offset field.
if (Subtarget->getIndirectExternAndWeakGlobals() &&
(GV->hasWeakLinkage() || GV->isExternal())) {
break;
} else {
AM.GV = GV;
return false;
}
}
break;
case ISD::Constant:
AM.Disp += cast<ConstantSDNode>(N)->getValue();
return false;
case ISD::SHL:
if (AM.IndexReg.Val == 0 && AM.Scale == 1)
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
unsigned Val = CN->getValue();
if (Val == 1 || Val == 2 || Val == 3) {
AM.Scale = 1 << Val;
SDOperand ShVal = N.Val->getOperand(0);
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
AM.IndexReg = ShVal.Val->getOperand(0);
ConstantSDNode *AddVal =
cast<ConstantSDNode>(ShVal.Val->getOperand(1));
AM.Disp += AddVal->getValue() << Val;
} else {
AM.IndexReg = ShVal;
}
return false;
}
}
break;
case ISD::MUL:
// X*[3,5,9] -> X+X*[2,4,8]
if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase &&
AM.Base.Reg.Val == 0)
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
AM.Scale = unsigned(CN->getValue())-1;
SDOperand MulVal = N.Val->getOperand(0);
SDOperand Reg;
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
Reg = MulVal.Val->getOperand(0);
ConstantSDNode *AddVal =
cast<ConstantSDNode>(MulVal.Val->getOperand(1));
AM.Disp += AddVal->getValue() * CN->getValue();
} else {
Reg = N.Val->getOperand(0);
}
AM.IndexReg = AM.Base.Reg = Reg;
return false;
}
break;
case ISD::ADD: {
X86ISelAddressMode Backup = AM;
if (!MatchAddress(N.Val->getOperand(0), AM) &&
!MatchAddress(N.Val->getOperand(1), AM))
return false;
AM = Backup;
if (!MatchAddress(N.Val->getOperand(1), AM) &&
!MatchAddress(N.Val->getOperand(0), AM))
return false;
AM = Backup;
break;
}
}
// Is the base register already occupied?
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
// If so, check to see if the scale index register is set.
if (AM.IndexReg.Val == 0) {
AM.IndexReg = N;
AM.Scale = 1;
return false;
}
// Otherwise, we cannot select it.
return true;
}
// Default, generate it as a register.
AM.BaseType = X86ISelAddressMode::RegBase;
AM.Base.Reg = N;
return false;
}
SDOperand X86DAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
MVT::ValueType OpVT = N->getValueType(0);
unsigned Opc;
if (N->getOpcode() >= ISD::BUILTIN_OP_END)
return Op; // Already selected.
switch (N->getOpcode()) {
default: break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
if (N->getOpcode() == ISD::SHL && CN->getValue() == 1) {
// X = SHL Y, 1 -> X = ADD Y, Y
switch (OpVT) {
default: assert(0 && "Cannot shift this type!");
case MVT::i8: Opc = X86::ADD8rr; break;
case MVT::i16: Opc = X86::ADD16rr; break;
case MVT::i32: Opc = X86::ADD32rr; break;
}
SDOperand Tmp0 = Select(N->getOperand(0));
CurDAG->SelectNodeTo(N, Opc, MVT::i32, Tmp0, Tmp0);
return SDOperand(N, 0);
}
} else {
static const unsigned SHLTab[] = {
X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL
};
static const unsigned SRLTab[] = {
X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL
};
static const unsigned SRATab[] = {
X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL
};
switch (OpVT) {
default: assert(0 && "Cannot shift this type!");
case MVT::i1:
case MVT::i8: Opc = 0; break;
case MVT::i16: Opc = 1; break;
case MVT::i32: Opc = 2; break;
}
switch (N->getOpcode()) {
default: assert(0 && "Unreachable!");
case ISD::SHL: Opc = SHLTab[Opc]; break;
case ISD::SRL: Opc = SRLTab[Opc]; break;
case ISD::SRA: Opc = SRATab[Opc]; break;
}
SDOperand Tmp0 = Select(N->getOperand(0));
CurDAG->SelectNodeTo(N, Opc, MVT::i32, Tmp0);
return SDOperand(N, 0);
}
break;
case ISD::RET: {
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
switch (N->getNumOperands()) {
default:
assert(0 && "Unknown return instruction!");
case 3:
assert(0 && "Not yet handled return instruction!");
break;
case 2: {
SDOperand Val = Select(N->getOperand(1));
switch (N->getOperand(1).getValueType()) {
default:
assert(0 && "All other types should have been promoted!!");
case MVT::i32:
Chain = CurDAG->getCopyToReg(Chain, X86::EAX, Val);
break;
case MVT::f32:
case MVT::f64:
assert(0 && "Not yet handled return instruction!");
break;
}
}
case 1:
break;
}
if (X86Lowering.getBytesToPopOnReturn() == 0)
CurDAG->SelectNodeTo(N, X86::RET, MVT::Other, Chain);
else
CurDAG->SelectNodeTo(N, X86::RET, MVT::Other,
getI16Imm(X86Lowering.getBytesToPopOnReturn()),
Chain);
return SDOperand(N, 0);
}
case ISD::LOAD: {
switch (OpVT) {
default: assert(0 && "Cannot load this type!");
case MVT::i1:
case MVT::i8: Opc = X86::MOV8rm; break;
case MVT::i16: Opc = X86::MOV16rm; break;
case MVT::i32: Opc = X86::MOV32rm; break;
case MVT::f32: Opc = X86::MOVSSrm; break;
case MVT::f64: Opc = X86::FLD64m; ContainsFPCode = true; break;
}
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N->getOperand(1))){
unsigned CPIdx = BB->getParent()->getConstantPool()->
getConstantPoolIndex(CP->get());
// ???
assert(0 && "Can't handle load from constant pool!");
} else {
X86ISelAddressMode AM;
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
SelectAddress(N->getOperand(1), AM);
SDOperand Scale = getI8Imm (AM.Scale);
SDOperand Disp = AM.GV
? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
: getI32Imm(AM.Disp);
if (AM.BaseType == X86ISelAddressMode::RegBase) {
CurDAG->SelectNodeTo(N, Opc, OpVT, MVT::Other,
AM.Base.Reg, Scale, AM.IndexReg, Disp, Chain);
} else {
SDOperand Base = CurDAG->getFrameIndex(AM.Base.FrameIndex, MVT::i32);
CurDAG->SelectNodeTo(N, Opc, OpVT, MVT::Other,
Base, Scale, AM.IndexReg, Disp, Chain);
}
}
return SDOperand(N, Op.ResNo);
}
case ISD::STORE: {
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
SDOperand Tmp1 = Select(N->getOperand(1));
X86ISelAddressMode AM;
SelectAddress(N->getOperand(2), AM);
Opc = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
switch (CN->getValueType(0)) {
default: assert(0 && "Invalid type for operation!");
case MVT::i1:
case MVT::i8: Opc = X86::MOV8mi; break;
case MVT::i16: Opc = X86::MOV16mi; break;
case MVT::i32: Opc = X86::MOV32mi; break;
}
}
if (!Opc) {
switch (N->getOperand(1).getValueType()) {
default: assert(0 && "Cannot store this type!");
case MVT::i1:
case MVT::i8: Opc = X86::MOV8mr; break;
case MVT::i16: Opc = X86::MOV16mr; break;
case MVT::i32: Opc = X86::MOV32mr; break;
case MVT::f32: Opc = X86::MOVSSmr; break;
case MVT::f64: Opc = X86::FST64m; break;
}
}
SDOperand Scale = getI8Imm (AM.Scale);
SDOperand Disp = AM.GV
? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
: getI32Imm(AM.Disp);
if (AM.BaseType == X86ISelAddressMode::RegBase) {
CurDAG->SelectNodeTo(N, Opc, MVT::Other,
AM.Base.Reg, Scale, AM.IndexReg, Disp, Tmp1,
Chain);
} else {
SDOperand Base = CurDAG->getFrameIndex(AM.Base.FrameIndex, MVT::i32);
CurDAG->SelectNodeTo(N, Opc, MVT::Other,
Base, Scale, AM.IndexReg, Disp, Tmp1, Chain);
}
}
}
return SelectCode(Op);
}
/// createX86ISelDag - This pass converts a legalized DAG into a
/// X86-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createX86ISelDag(TargetMachine &TM) {
return new X86DAGToDAGISel(TM);
}