mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
d105a8707a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7663 91177308-0d34-0410-b5e6-96231b3b80d8
461 lines
13 KiB
C
461 lines
13 KiB
C
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#undef assert
|
|
#define assert(X)
|
|
|
|
|
|
/* In the current implementation, each slab in the pool has NODES_PER_SLAB
|
|
* nodes unless the isSingleArray flag is set in which case it contains a
|
|
* single array of size ArraySize. Small arrays (size <= NODES_PER_SLAB) are
|
|
* still allocated in the slabs of size NODES_PER_SLAB
|
|
*/
|
|
#define NODES_PER_SLAB 512
|
|
|
|
typedef struct PoolTy {
|
|
void *Data;
|
|
unsigned NodeSize;
|
|
unsigned FreeablePool; /* Set to false if the memory from this pool cannot be
|
|
freed before destroy*/
|
|
|
|
} PoolTy;
|
|
|
|
/* PoolSlab Structure - Hold NODES_PER_SLAB objects of the current node type.
|
|
* Invariants: FirstUnused <= LastUsed+1
|
|
*/
|
|
typedef struct PoolSlab {
|
|
unsigned FirstUnused; /* First empty node in slab */
|
|
int LastUsed; /* Last allocated node in slab */
|
|
struct PoolSlab *Next;
|
|
unsigned char AllocatedBitVector[NODES_PER_SLAB/8];
|
|
unsigned char StartOfAllocation[NODES_PER_SLAB/8];
|
|
|
|
unsigned isSingleArray; /* If this slab is used for exactly one array */
|
|
/* The array is allocated from the start to the end of the slab */
|
|
unsigned ArraySize; /* The size of the array allocated */
|
|
|
|
char Data[1]; /* Buffer to hold data in this slab... variable sized */
|
|
|
|
} PoolSlab;
|
|
|
|
#define NODE_ALLOCATED(POOLSLAB, NODENUM) \
|
|
((POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] & (1 << ((NODENUM) & 7)))
|
|
#define MARK_NODE_ALLOCATED(POOLSLAB, NODENUM) \
|
|
(POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] |= 1 << ((NODENUM) & 7)
|
|
#define MARK_NODE_FREE(POOLSLAB, NODENUM) \
|
|
(POOLSLAB)->AllocatedBitVector[(NODENUM) >> 3] &= ~(1 << ((NODENUM) & 7))
|
|
#define ALLOCATION_BEGINS(POOLSLAB, NODENUM) \
|
|
((POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] & (1 << ((NODENUM) & 7)))
|
|
#define SET_START_BIT(POOLSLAB, NODENUM) \
|
|
(POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] |= 1 << ((NODENUM) & 7)
|
|
#define CLEAR_START_BIT(POOLSLAB, NODENUM) \
|
|
(POOLSLAB)->StartOfAllocation[(NODENUM) >> 3] &= ~(1 << ((NODENUM) & 7))
|
|
|
|
|
|
/* poolinit - Initialize a pool descriptor to empty
|
|
*/
|
|
void poolinit(PoolTy *Pool, unsigned NodeSize) {
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed into poolinit!\n");
|
|
exit(1);
|
|
}
|
|
|
|
Pool->NodeSize = NodeSize;
|
|
Pool->Data = 0;
|
|
|
|
Pool->FreeablePool = 1;
|
|
|
|
}
|
|
|
|
void poolmakeunfreeable(PoolTy *Pool) {
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed in to poolmakeunfreeable!\n");
|
|
exit(1);
|
|
}
|
|
|
|
Pool->FreeablePool = 0;
|
|
}
|
|
|
|
/* pooldestroy - Release all memory allocated for a pool
|
|
*/
|
|
void pooldestroy(PoolTy *Pool) {
|
|
PoolSlab *PS;
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed in to pooldestroy!\n");
|
|
exit(1);
|
|
}
|
|
|
|
PS = (PoolSlab*)Pool->Data;
|
|
while (PS) {
|
|
PoolSlab *Next = PS->Next;
|
|
free(PS);
|
|
PS = Next;
|
|
}
|
|
}
|
|
|
|
static void *FindSlabEntry(PoolSlab *PS, unsigned NodeSize) {
|
|
/* Loop through all of the slabs looking for one with an opening */
|
|
for (; PS; PS = PS->Next) {
|
|
|
|
/* If the slab is a single array, go on to the next slab */
|
|
/* Don't allocate single nodes in a SingleArray slab */
|
|
if (PS->isSingleArray)
|
|
continue;
|
|
|
|
/* Check to see if there are empty entries at the end of the slab... */
|
|
if (PS->LastUsed < NODES_PER_SLAB-1) {
|
|
/* Mark the returned entry used */
|
|
MARK_NODE_ALLOCATED(PS, PS->LastUsed+1);
|
|
SET_START_BIT(PS, PS->LastUsed+1);
|
|
|
|
/* If we are allocating out the first unused field, bump its index also */
|
|
if (PS->FirstUnused == PS->LastUsed+1)
|
|
PS->FirstUnused++;
|
|
|
|
/* Return the entry, increment LastUsed field. */
|
|
return &PS->Data[0] + ++PS->LastUsed * NodeSize;
|
|
}
|
|
|
|
/* If not, check to see if this node has a declared "FirstUnused" value that
|
|
* is less than the number of nodes allocated...
|
|
*/
|
|
if (PS->FirstUnused < NODES_PER_SLAB) {
|
|
/* Successfully allocate out the first unused node */
|
|
unsigned Idx = PS->FirstUnused;
|
|
|
|
MARK_NODE_ALLOCATED(PS, Idx);
|
|
SET_START_BIT(PS, Idx);
|
|
|
|
/* Increment FirstUnused to point to the new first unused value... */
|
|
do {
|
|
++PS->FirstUnused;
|
|
} while (PS->FirstUnused < NODES_PER_SLAB &&
|
|
NODE_ALLOCATED(PS, PS->FirstUnused));
|
|
|
|
return &PS->Data[0] + Idx*NodeSize;
|
|
}
|
|
}
|
|
|
|
/* No empty nodes available, must grow # slabs! */
|
|
return 0;
|
|
}
|
|
|
|
char *poolalloc(PoolTy *Pool) {
|
|
unsigned NodeSize;
|
|
PoolSlab *PS;
|
|
void *Result;
|
|
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed in to poolalloc!\n");
|
|
exit(1);
|
|
}
|
|
|
|
NodeSize = Pool->NodeSize;
|
|
// Return if this pool has size 0
|
|
if (NodeSize == 0)
|
|
return 0;
|
|
|
|
PS = (PoolSlab*)Pool->Data;
|
|
|
|
if ((Result = FindSlabEntry(PS, NodeSize)))
|
|
return Result;
|
|
|
|
/* Otherwise we must allocate a new slab and add it to the list */
|
|
PS = (PoolSlab*)malloc(sizeof(PoolSlab)+NodeSize*NODES_PER_SLAB-1);
|
|
|
|
if (!PS) {
|
|
printf("poolalloc: Could not allocate memory!");
|
|
exit(1);
|
|
}
|
|
|
|
/* Initialize the slab to indicate that the first element is allocated */
|
|
PS->FirstUnused = 1;
|
|
PS->LastUsed = 0;
|
|
/* This is not a single array */
|
|
PS->isSingleArray = 0;
|
|
PS->ArraySize = 0;
|
|
|
|
MARK_NODE_ALLOCATED(PS, 0);
|
|
SET_START_BIT(PS, 0);
|
|
|
|
/* Add the slab to the list... */
|
|
PS->Next = (PoolSlab*)Pool->Data;
|
|
Pool->Data = PS;
|
|
return &PS->Data[0];
|
|
}
|
|
|
|
void poolfree(PoolTy *Pool, char *Node) {
|
|
unsigned NodeSize, Idx;
|
|
PoolSlab *PS;
|
|
PoolSlab **PPS;
|
|
unsigned idxiter;
|
|
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed in to poolfree!\n");
|
|
exit(1);
|
|
}
|
|
|
|
NodeSize = Pool->NodeSize;
|
|
|
|
// Return if this pool has size 0
|
|
if (NodeSize == 0)
|
|
return;
|
|
|
|
PS = (PoolSlab*)Pool->Data;
|
|
PPS = (PoolSlab**)&Pool->Data;
|
|
|
|
/* Search for the slab that contains this node... */
|
|
while (&PS->Data[0] > Node || &PS->Data[NodeSize*NODES_PER_SLAB-1] < Node) {
|
|
if (!PS) {
|
|
printf("poolfree: node being free'd not found in allocation pool specified!\n");
|
|
exit(1);
|
|
}
|
|
|
|
PPS = &PS->Next;
|
|
PS = PS->Next;
|
|
}
|
|
|
|
/* PS now points to the slab where Node is */
|
|
|
|
Idx = (Node-&PS->Data[0])/NodeSize;
|
|
assert(Idx < NODES_PER_SLAB && "Pool slab searching loop broken!");
|
|
|
|
if (PS->isSingleArray) {
|
|
|
|
/* If this slab is a SingleArray */
|
|
|
|
if (Idx != 0) {
|
|
printf("poolfree: Attempt to free middle of allocated array\n");
|
|
exit(1);
|
|
}
|
|
if (!NODE_ALLOCATED(PS,0)) {
|
|
printf("poolfree: Attempt to free node that is already freed\n");
|
|
exit(1);
|
|
}
|
|
/* Mark this SingleArray slab as being free by just marking the first
|
|
entry as free*/
|
|
MARK_NODE_FREE(PS, 0);
|
|
} else {
|
|
|
|
/* If this slab is not a SingleArray */
|
|
|
|
if (!ALLOCATION_BEGINS(PS, Idx)) {
|
|
printf("poolfree: Attempt to free middle of allocated array\n");
|
|
}
|
|
|
|
/* Free the first node */
|
|
if (!NODE_ALLOCATED(PS, Idx)) {
|
|
printf("poolfree: Attempt to free node that is already freed\n");
|
|
exit(1);
|
|
}
|
|
CLEAR_START_BIT(PS, Idx);
|
|
MARK_NODE_FREE(PS, Idx);
|
|
|
|
// Free all nodes
|
|
idxiter = Idx + 1;
|
|
while (idxiter < NODES_PER_SLAB && (!ALLOCATION_BEGINS(PS,idxiter)) &&
|
|
(NODE_ALLOCATED(PS, idxiter))) {
|
|
MARK_NODE_FREE(PS, idxiter);
|
|
++idxiter;
|
|
}
|
|
|
|
/* Update the first free field if this node is below the free node line */
|
|
if (Idx < PS->FirstUnused) PS->FirstUnused = Idx;
|
|
|
|
/* If we are not freeing the last element in a slab... */
|
|
if (idxiter - 1 != PS->LastUsed) {
|
|
return;
|
|
}
|
|
|
|
/* Otherwise we are freeing the last element in a slab... shrink the
|
|
* LastUsed marker down to last used node.
|
|
*/
|
|
PS->LastUsed = Idx;
|
|
do {
|
|
--PS->LastUsed;
|
|
/* Fixme, this should scan the allocated array an entire byte at a time
|
|
* for performance!
|
|
*/
|
|
} while (PS->LastUsed >= 0 && (!NODE_ALLOCATED(PS, PS->LastUsed)));
|
|
|
|
assert(PS->FirstUnused <= PS->LastUsed+1 &&
|
|
"FirstUnused field was out of date!");
|
|
}
|
|
|
|
/* Ok, if this slab is empty, we unlink it from the of slabs and either move
|
|
* it to the head of the list, or free it, depending on whether or not there
|
|
* is already an empty slab at the head of the list.
|
|
*/
|
|
/* Do this only if the pool is freeable */
|
|
if (Pool->FreeablePool) {
|
|
if (PS->isSingleArray) {
|
|
/* If it is a SingleArray, just free it */
|
|
*PPS = PS->Next;
|
|
free(PS);
|
|
} else if (PS->LastUsed == -1) { /* Empty slab? */
|
|
PoolSlab *HeadSlab;
|
|
*PPS = PS->Next; /* Unlink from the list of slabs... */
|
|
|
|
HeadSlab = (PoolSlab*)Pool->Data;
|
|
if (HeadSlab && HeadSlab->LastUsed == -1){/*List already has empty slab?*/
|
|
free(PS); /*Free memory for slab */
|
|
} else {
|
|
PS->Next = HeadSlab; /*No empty slab yet, add this*/
|
|
Pool->Data = PS; /*one to the head of the list */
|
|
}
|
|
}
|
|
} else {
|
|
/* Pool is not freeable for safety reasons */
|
|
/* Leave it in the list of PoolSlabs as an empty PoolSlab */
|
|
if (!PS->isSingleArray)
|
|
if (PS->LastUsed == -1) {
|
|
PS->FirstUnused = 0;
|
|
|
|
/* Do not free the pool, but move it to the head of the list if there is
|
|
no empty slab there already */
|
|
PoolSlab *HeadSlab;
|
|
HeadSlab = (PoolSlab*)Pool->Data;
|
|
if (HeadSlab && HeadSlab->LastUsed != -1) {
|
|
PS->Next = HeadSlab;
|
|
Pool->Data = PS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The poolallocarray version of FindSlabEntry */
|
|
static void *FindSlabEntryArray(PoolSlab *PS, unsigned NodeSize,
|
|
unsigned Size) {
|
|
unsigned i;
|
|
|
|
/* Loop through all of the slabs looking for one with an opening */
|
|
for (; PS; PS = PS->Next) {
|
|
|
|
/* For large array allocation */
|
|
if (Size > NODES_PER_SLAB) {
|
|
/* If this slab is a SingleArray that is free with size > Size, use it */
|
|
if (PS->isSingleArray && !NODE_ALLOCATED(PS,0) && PS->ArraySize >= Size) {
|
|
/* Allocate the array in this slab */
|
|
MARK_NODE_ALLOCATED(PS,0); /* In a single array, only the first node
|
|
needs to be marked */
|
|
return &PS->Data[0];
|
|
} else
|
|
continue;
|
|
} else if (PS->isSingleArray)
|
|
continue; /* Do not allocate small arrays in SingleArray slabs */
|
|
|
|
/* For small array allocation */
|
|
/* Check to see if there are empty entries at the end of the slab... */
|
|
if (PS->LastUsed < NODES_PER_SLAB-Size) {
|
|
/* Mark the returned entry used and set the start bit*/
|
|
SET_START_BIT(PS, PS->LastUsed + 1);
|
|
for (i = PS->LastUsed + 1; i <= PS->LastUsed + Size; ++i)
|
|
MARK_NODE_ALLOCATED(PS, i);
|
|
|
|
/* If we are allocating out the first unused field, bump its index also */
|
|
if (PS->FirstUnused == PS->LastUsed+1)
|
|
PS->FirstUnused += Size;
|
|
|
|
/* Increment LastUsed */
|
|
PS->LastUsed += Size;
|
|
|
|
/* Return the entry */
|
|
return &PS->Data[0] + (PS->LastUsed - Size + 1) * NodeSize;
|
|
}
|
|
|
|
/* If not, check to see if this node has a declared "FirstUnused" value
|
|
* starting which Size nodes can be allocated
|
|
*/
|
|
if (PS->FirstUnused < NODES_PER_SLAB - Size + 1 &&
|
|
(PS->LastUsed < PS->FirstUnused ||
|
|
PS->LastUsed - PS->FirstUnused >= Size)) {
|
|
unsigned Idx = PS->FirstUnused, foundArray;
|
|
|
|
/* Check if there is a continuous array of Size nodes starting
|
|
FirstUnused */
|
|
foundArray = 1;
|
|
for (i = Idx; (i < Idx + Size) && foundArray; ++i)
|
|
if (NODE_ALLOCATED(PS, i))
|
|
foundArray = 0;
|
|
|
|
if (foundArray) {
|
|
/* Successfully allocate starting from the first unused node */
|
|
SET_START_BIT(PS, Idx);
|
|
for (i = Idx; i < Idx + Size; ++i)
|
|
MARK_NODE_ALLOCATED(PS, i);
|
|
|
|
PS->FirstUnused += Size;
|
|
while (PS->FirstUnused < NODES_PER_SLAB &&
|
|
NODE_ALLOCATED(PS, PS->FirstUnused)) {
|
|
++PS->FirstUnused;
|
|
}
|
|
return &PS->Data[0] + Idx*NodeSize;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* No empty nodes available, must grow # slabs! */
|
|
return 0;
|
|
}
|
|
|
|
char* poolallocarray(PoolTy* Pool, unsigned Size) {
|
|
unsigned NodeSize;
|
|
PoolSlab *PS;
|
|
void *Result;
|
|
unsigned i;
|
|
|
|
if (!Pool) {
|
|
printf("Null pool pointer passed to poolallocarray!\n");
|
|
exit(1);
|
|
}
|
|
|
|
NodeSize = Pool->NodeSize;
|
|
|
|
// Return if this pool has size 0
|
|
if (NodeSize == 0)
|
|
return 0;
|
|
|
|
PS = (PoolSlab*)Pool->Data;
|
|
|
|
if ((Result = FindSlabEntryArray(PS, NodeSize,Size)))
|
|
return Result;
|
|
|
|
/* Otherwise we must allocate a new slab and add it to the list */
|
|
if (Size > NODES_PER_SLAB) {
|
|
/* Allocate a new slab of size Size */
|
|
PS = (PoolSlab*)malloc(sizeof(PoolSlab)+NodeSize*Size-1);
|
|
if (!PS) {
|
|
printf("poolallocarray: Could not allocate memory!\n");
|
|
exit(1);
|
|
}
|
|
PS->isSingleArray = 1;
|
|
PS->ArraySize = Size;
|
|
MARK_NODE_ALLOCATED(PS, 0);
|
|
} else {
|
|
PS = (PoolSlab*)malloc(sizeof(PoolSlab)+NodeSize*NODES_PER_SLAB-1);
|
|
if (!PS) {
|
|
printf("poolallocarray: Could not allocate memory!\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Initialize the slab to indicate that the first element is allocated */
|
|
PS->FirstUnused = Size;
|
|
PS->LastUsed = Size - 1;
|
|
|
|
PS->isSingleArray = 0;
|
|
PS->ArraySize = 0;
|
|
|
|
SET_START_BIT(PS, 0);
|
|
for (i = 0; i < Size; ++i) {
|
|
MARK_NODE_ALLOCATED(PS, i);
|
|
}
|
|
}
|
|
|
|
/* Add the slab to the list... */
|
|
PS->Next = (PoolSlab*)Pool->Data;
|
|
Pool->Data = PS;
|
|
return &PS->Data[0];
|
|
}
|