mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111791 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1305 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1305 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a MachineCodeEmitter object that is used by the JIT to
 | 
						|
// write machine code to memory and remember where relocatable values are.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jit"
 | 
						|
#include "JIT.h"
 | 
						|
#include "JITDebugRegisterer.h"
 | 
						|
#include "JITDwarfEmitter.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/CodeGen/JITCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRelocation.h"
 | 
						|
#include "llvm/ExecutionEngine/GenericValue.h"
 | 
						|
#include "llvm/ExecutionEngine/JITEventListener.h"
 | 
						|
#include "llvm/ExecutionEngine/JITMemoryManager.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetJITInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MutexGuard.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/System/Disassembler.h"
 | 
						|
#include "llvm/System/Memory.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/ValueMap.h"
 | 
						|
#include <algorithm>
 | 
						|
#ifndef NDEBUG
 | 
						|
#include <iomanip>
 | 
						|
#endif
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumBytes, "Number of bytes of machine code compiled");
 | 
						|
STATISTIC(NumRelos, "Number of relocations applied");
 | 
						|
STATISTIC(NumRetries, "Number of retries with more memory");
 | 
						|
 | 
						|
 | 
						|
// A declaration may stop being a declaration once it's fully read from bitcode.
 | 
						|
// This function returns true if F is fully read and is still a declaration.
 | 
						|
static bool isNonGhostDeclaration(const Function *F) {
 | 
						|
  return F->isDeclaration() && !F->isMaterializable();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// JIT lazy compilation code.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
  class JITEmitter;
 | 
						|
  class JITResolverState;
 | 
						|
 | 
						|
  template<typename ValueTy>
 | 
						|
  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
 | 
						|
    typedef JITResolverState *ExtraData;
 | 
						|
    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
 | 
						|
      assert(false && "The JIT doesn't know how to handle a"
 | 
						|
             " RAUW on a value it has emitted.");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
 | 
						|
    typedef JITResolverState *ExtraData;
 | 
						|
    static void onDelete(JITResolverState *JRS, Function *F);
 | 
						|
  };
 | 
						|
 | 
						|
  class JITResolverState {
 | 
						|
  public:
 | 
						|
    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
 | 
						|
      FunctionToLazyStubMapTy;
 | 
						|
    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
 | 
						|
    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
 | 
						|
                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
 | 
						|
    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
 | 
						|
  private:
 | 
						|
    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
 | 
						|
    /// particular function so that we can reuse them if necessary.
 | 
						|
    FunctionToLazyStubMapTy FunctionToLazyStubMap;
 | 
						|
 | 
						|
    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
 | 
						|
    /// site corresponds to, and vice versa.
 | 
						|
    CallSiteToFunctionMapTy CallSiteToFunctionMap;
 | 
						|
    FunctionToCallSitesMapTy FunctionToCallSitesMap;
 | 
						|
 | 
						|
    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
 | 
						|
    /// particular GlobalVariable so that we can reuse them if necessary.
 | 
						|
    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
 | 
						|
 | 
						|
    /// Instance of the JIT this ResolverState serves.
 | 
						|
    JIT *TheJIT;
 | 
						|
 | 
						|
  public:
 | 
						|
    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
 | 
						|
                                 FunctionToCallSitesMap(this),
 | 
						|
                                 TheJIT(jit) {}
 | 
						|
 | 
						|
    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
 | 
						|
      const MutexGuard& locked) {
 | 
						|
      assert(locked.holds(TheJIT->lock));
 | 
						|
      return FunctionToLazyStubMap;
 | 
						|
    }
 | 
						|
 | 
						|
    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
 | 
						|
      assert(locked.holds(TheJIT->lock));
 | 
						|
      return GlobalToIndirectSymMap;
 | 
						|
    }
 | 
						|
 | 
						|
    pair<void *, Function *> LookupFunctionFromCallSite(
 | 
						|
        const MutexGuard &locked, void *CallSite) const {
 | 
						|
      assert(locked.holds(TheJIT->lock));
 | 
						|
 | 
						|
      // The address given to us for the stub may not be exactly right, it might be
 | 
						|
      // a little bit after the stub.  As such, use upper_bound to find it.
 | 
						|
      CallSiteToFunctionMapTy::const_iterator I =
 | 
						|
        CallSiteToFunctionMap.upper_bound(CallSite);
 | 
						|
      assert(I != CallSiteToFunctionMap.begin() &&
 | 
						|
             "This is not a known call site!");
 | 
						|
      --I;
 | 
						|
      return *I;
 | 
						|
    }
 | 
						|
 | 
						|
    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
 | 
						|
      assert(locked.holds(TheJIT->lock));
 | 
						|
 | 
						|
      bool Inserted = CallSiteToFunctionMap.insert(
 | 
						|
          std::make_pair(CallSite, F)).second;
 | 
						|
      (void)Inserted;
 | 
						|
      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
 | 
						|
      FunctionToCallSitesMap[F].insert(CallSite);
 | 
						|
    }
 | 
						|
 | 
						|
    void EraseAllCallSitesForPrelocked(Function *F);
 | 
						|
 | 
						|
    // Erases _all_ call sites regardless of their function.  This is used to
 | 
						|
    // unregister the stub addresses from the StubToResolverMap in
 | 
						|
    // ~JITResolver().
 | 
						|
    void EraseAllCallSitesPrelocked();
 | 
						|
  };
 | 
						|
 | 
						|
  /// JITResolver - Keep track of, and resolve, call sites for functions that
 | 
						|
  /// have not yet been compiled.
 | 
						|
  class JITResolver {
 | 
						|
    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
 | 
						|
    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
 | 
						|
    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
 | 
						|
 | 
						|
    /// LazyResolverFn - The target lazy resolver function that we actually
 | 
						|
    /// rewrite instructions to use.
 | 
						|
    TargetJITInfo::LazyResolverFn LazyResolverFn;
 | 
						|
 | 
						|
    JITResolverState state;
 | 
						|
 | 
						|
    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
 | 
						|
    /// for external functions.  TODO: Of course, external functions don't need
 | 
						|
    /// a lazy stub.  It's actually here to make it more likely that far calls
 | 
						|
    /// succeed, but no single stub can guarantee that.  I'll remove this in a
 | 
						|
    /// subsequent checkin when I actually fix far calls.
 | 
						|
    std::map<void*, void*> ExternalFnToStubMap;
 | 
						|
 | 
						|
    /// revGOTMap - map addresses to indexes in the GOT
 | 
						|
    std::map<void*, unsigned> revGOTMap;
 | 
						|
    unsigned nextGOTIndex;
 | 
						|
 | 
						|
    JITEmitter &JE;
 | 
						|
 | 
						|
    /// Instance of JIT corresponding to this Resolver.
 | 
						|
    JIT *TheJIT;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit JITResolver(JIT &jit, JITEmitter &je)
 | 
						|
      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
 | 
						|
      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
 | 
						|
    }
 | 
						|
 | 
						|
    ~JITResolver();
 | 
						|
 | 
						|
    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
 | 
						|
    /// lazy-compilation stub if it has already been created.
 | 
						|
    void *getLazyFunctionStubIfAvailable(Function *F);
 | 
						|
 | 
						|
    /// getLazyFunctionStub - This returns a pointer to a function's
 | 
						|
    /// lazy-compilation stub, creating one on demand as needed.
 | 
						|
    void *getLazyFunctionStub(Function *F);
 | 
						|
 | 
						|
    /// getExternalFunctionStub - Return a stub for the function at the
 | 
						|
    /// specified address, created lazily on demand.
 | 
						|
    void *getExternalFunctionStub(void *FnAddr);
 | 
						|
 | 
						|
    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
 | 
						|
    /// specified GV address.
 | 
						|
    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
 | 
						|
 | 
						|
    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
 | 
						|
    /// an address.  This function only manages slots, it does not manage the
 | 
						|
    /// contents of the slots or the memory associated with the GOT.
 | 
						|
    unsigned getGOTIndexForAddr(void *addr);
 | 
						|
 | 
						|
    /// JITCompilerFn - This function is called to resolve a stub to a compiled
 | 
						|
    /// address.  If the LLVM Function corresponding to the stub has not yet
 | 
						|
    /// been compiled, this function compiles it first.
 | 
						|
    static void *JITCompilerFn(void *Stub);
 | 
						|
  };
 | 
						|
 | 
						|
  class StubToResolverMapTy {
 | 
						|
    /// Map a stub address to a specific instance of a JITResolver so that
 | 
						|
    /// lazily-compiled functions can find the right resolver to use.
 | 
						|
    ///
 | 
						|
    /// Guarded by Lock.
 | 
						|
    std::map<void*, JITResolver*> Map;
 | 
						|
 | 
						|
    /// Guards Map from concurrent accesses.
 | 
						|
    mutable sys::Mutex Lock;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Registers a Stub to be resolved by Resolver.
 | 
						|
    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
 | 
						|
      MutexGuard guard(Lock);
 | 
						|
      Map.insert(std::make_pair(Stub, Resolver));
 | 
						|
    }
 | 
						|
    /// Unregisters the Stub when it's invalidated.
 | 
						|
    void UnregisterStubResolver(void *Stub) {
 | 
						|
      MutexGuard guard(Lock);
 | 
						|
      Map.erase(Stub);
 | 
						|
    }
 | 
						|
    /// Returns the JITResolver instance that owns the Stub.
 | 
						|
    JITResolver *getResolverFromStub(void *Stub) const {
 | 
						|
      MutexGuard guard(Lock);
 | 
						|
      // The address given to us for the stub may not be exactly right, it might
 | 
						|
      // be a little bit after the stub.  As such, use upper_bound to find it.
 | 
						|
      // This is the same trick as in LookupFunctionFromCallSite from
 | 
						|
      // JITResolverState.
 | 
						|
      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
 | 
						|
      assert(I != Map.begin() && "This is not a known stub!");
 | 
						|
      --I;
 | 
						|
      return I->second;
 | 
						|
    }
 | 
						|
    /// True if any stubs refer to the given resolver. Only used in an assert().
 | 
						|
    /// O(N)
 | 
						|
    bool ResolverHasStubs(JITResolver* Resolver) const {
 | 
						|
      MutexGuard guard(Lock);
 | 
						|
      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
 | 
						|
             E = Map.end(); I != E; ++I) {
 | 
						|
        if (I->second == Resolver)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  /// This needs to be static so that a lazy call stub can access it with no
 | 
						|
  /// context except the address of the stub.
 | 
						|
  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
 | 
						|
 | 
						|
  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
 | 
						|
  /// used to output functions to memory for execution.
 | 
						|
  class JITEmitter : public JITCodeEmitter {
 | 
						|
    JITMemoryManager *MemMgr;
 | 
						|
 | 
						|
    // When outputting a function stub in the context of some other function, we
 | 
						|
    // save BufferBegin/BufferEnd/CurBufferPtr here.
 | 
						|
    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
 | 
						|
 | 
						|
    // When reattempting to JIT a function after running out of space, we store
 | 
						|
    // the estimated size of the function we're trying to JIT here, so we can
 | 
						|
    // ask the memory manager for at least this much space.  When we
 | 
						|
    // successfully emit the function, we reset this back to zero.
 | 
						|
    uintptr_t SizeEstimate;
 | 
						|
 | 
						|
    /// Relocations - These are the relocations that the function needs, as
 | 
						|
    /// emitted.
 | 
						|
    std::vector<MachineRelocation> Relocations;
 | 
						|
 | 
						|
    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
 | 
						|
    /// It is filled in by the StartMachineBasicBlock callback and queried by
 | 
						|
    /// the getMachineBasicBlockAddress callback.
 | 
						|
    std::vector<uintptr_t> MBBLocations;
 | 
						|
 | 
						|
    /// ConstantPool - The constant pool for the current function.
 | 
						|
    ///
 | 
						|
    MachineConstantPool *ConstantPool;
 | 
						|
 | 
						|
    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
 | 
						|
    ///
 | 
						|
    void *ConstantPoolBase;
 | 
						|
 | 
						|
    /// ConstPoolAddresses - Addresses of individual constant pool entries.
 | 
						|
    ///
 | 
						|
    SmallVector<uintptr_t, 8> ConstPoolAddresses;
 | 
						|
 | 
						|
    /// JumpTable - The jump tables for the current function.
 | 
						|
    ///
 | 
						|
    MachineJumpTableInfo *JumpTable;
 | 
						|
 | 
						|
    /// JumpTableBase - A pointer to the first entry in the jump table.
 | 
						|
    ///
 | 
						|
    void *JumpTableBase;
 | 
						|
 | 
						|
    /// Resolver - This contains info about the currently resolved functions.
 | 
						|
    JITResolver Resolver;
 | 
						|
 | 
						|
    /// DE - The dwarf emitter for the jit.
 | 
						|
    OwningPtr<JITDwarfEmitter> DE;
 | 
						|
 | 
						|
    /// DR - The debug registerer for the jit.
 | 
						|
    OwningPtr<JITDebugRegisterer> DR;
 | 
						|
 | 
						|
    /// LabelLocations - This vector is a mapping from Label ID's to their
 | 
						|
    /// address.
 | 
						|
    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
 | 
						|
 | 
						|
    /// MMI - Machine module info for exception informations
 | 
						|
    MachineModuleInfo* MMI;
 | 
						|
 | 
						|
    // CurFn - The llvm function being emitted.  Only valid during
 | 
						|
    // finishFunction().
 | 
						|
    const Function *CurFn;
 | 
						|
 | 
						|
    /// Information about emitted code, which is passed to the
 | 
						|
    /// JITEventListeners.  This is reset in startFunction and used in
 | 
						|
    /// finishFunction.
 | 
						|
    JITEvent_EmittedFunctionDetails EmissionDetails;
 | 
						|
 | 
						|
    struct EmittedCode {
 | 
						|
      void *FunctionBody;  // Beginning of the function's allocation.
 | 
						|
      void *Code;  // The address the function's code actually starts at.
 | 
						|
      void *ExceptionTable;
 | 
						|
      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
 | 
						|
    };
 | 
						|
    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
 | 
						|
      typedef JITEmitter *ExtraData;
 | 
						|
      static void onDelete(JITEmitter *, const Function*);
 | 
						|
      static void onRAUW(JITEmitter *, const Function*, const Function*);
 | 
						|
    };
 | 
						|
    ValueMap<const Function *, EmittedCode,
 | 
						|
             EmittedFunctionConfig> EmittedFunctions;
 | 
						|
 | 
						|
    DebugLoc PrevDL;
 | 
						|
 | 
						|
    /// Instance of the JIT
 | 
						|
    JIT *TheJIT;
 | 
						|
 | 
						|
  public:
 | 
						|
    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
 | 
						|
      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
 | 
						|
        EmittedFunctions(this), TheJIT(&jit) {
 | 
						|
      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
 | 
						|
      if (jit.getJITInfo().needsGOT()) {
 | 
						|
        MemMgr->AllocateGOT();
 | 
						|
        DEBUG(dbgs() << "JIT is managing a GOT\n");
 | 
						|
      }
 | 
						|
 | 
						|
      if (JITExceptionHandling || JITEmitDebugInfo) {
 | 
						|
        DE.reset(new JITDwarfEmitter(jit));
 | 
						|
      }
 | 
						|
      if (JITEmitDebugInfo) {
 | 
						|
        DR.reset(new JITDebugRegisterer(TM));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ~JITEmitter() {
 | 
						|
      delete MemMgr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// classof - Methods for support type inquiry through isa, cast, and
 | 
						|
    /// dyn_cast:
 | 
						|
    ///
 | 
						|
    static inline bool classof(const MachineCodeEmitter*) { return true; }
 | 
						|
 | 
						|
    JITResolver &getJITResolver() { return Resolver; }
 | 
						|
 | 
						|
    virtual void startFunction(MachineFunction &F);
 | 
						|
    virtual bool finishFunction(MachineFunction &F);
 | 
						|
 | 
						|
    void emitConstantPool(MachineConstantPool *MCP);
 | 
						|
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
 | 
						|
    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
 | 
						|
 | 
						|
    void startGVStub(const GlobalValue* GV,
 | 
						|
                     unsigned StubSize, unsigned Alignment = 1);
 | 
						|
    void startGVStub(void *Buffer, unsigned StubSize);
 | 
						|
    void finishGVStub();
 | 
						|
    virtual void *allocIndirectGV(const GlobalValue *GV,
 | 
						|
                                  const uint8_t *Buffer, size_t Size,
 | 
						|
                                  unsigned Alignment);
 | 
						|
 | 
						|
    /// allocateSpace - Reserves space in the current block if any, or
 | 
						|
    /// allocate a new one of the given size.
 | 
						|
    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
 | 
						|
 | 
						|
    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
 | 
						|
    /// this method does not allocate memory in the current output buffer,
 | 
						|
    /// because a global may live longer than the current function.
 | 
						|
    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
 | 
						|
 | 
						|
    virtual void addRelocation(const MachineRelocation &MR) {
 | 
						|
      Relocations.push_back(MR);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
 | 
						|
      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
 | 
						|
        MBBLocations.resize((MBB->getNumber()+1)*2);
 | 
						|
      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
 | 
						|
      if (MBB->hasAddressTaken())
 | 
						|
        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
 | 
						|
                                       (void*)getCurrentPCValue());
 | 
						|
      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
 | 
						|
                   << (void*) getCurrentPCValue() << "]\n");
 | 
						|
    }
 | 
						|
 | 
						|
    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
 | 
						|
    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
 | 
						|
 | 
						|
    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
 | 
						|
      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
 | 
						|
             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
 | 
						|
      return MBBLocations[MBB->getNumber()];
 | 
						|
    }
 | 
						|
 | 
						|
    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
 | 
						|
    /// given function.  Increase the minimum allocation size so that we get
 | 
						|
    /// more memory next time.
 | 
						|
    void retryWithMoreMemory(MachineFunction &F);
 | 
						|
 | 
						|
    /// deallocateMemForFunction - Deallocate all memory for the specified
 | 
						|
    /// function body.
 | 
						|
    void deallocateMemForFunction(const Function *F);
 | 
						|
 | 
						|
    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
 | 
						|
 | 
						|
    virtual void emitLabel(MCSymbol *Label) {
 | 
						|
      LabelLocations[Label] = getCurrentPCValue();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
 | 
						|
      return &LabelLocations;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
 | 
						|
      assert(LabelLocations.count(Label) && "Label not emitted!");
 | 
						|
      return LabelLocations.find(Label)->second;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void setModuleInfo(MachineModuleInfo* Info) {
 | 
						|
      MMI = Info;
 | 
						|
      if (DE.get()) DE->setModuleInfo(Info);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
 | 
						|
                             bool MayNeedFarStub);
 | 
						|
    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
 | 
						|
  JRS->EraseAllCallSitesForPrelocked(F);
 | 
						|
}
 | 
						|
 | 
						|
void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
 | 
						|
  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
 | 
						|
  if (F2C == FunctionToCallSitesMap.end())
 | 
						|
    return;
 | 
						|
  StubToResolverMapTy &S2RMap = *StubToResolverMap;
 | 
						|
  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
 | 
						|
         E = F2C->second.end(); I != E; ++I) {
 | 
						|
    S2RMap.UnregisterStubResolver(*I);
 | 
						|
    bool Erased = CallSiteToFunctionMap.erase(*I);
 | 
						|
    (void)Erased;
 | 
						|
    assert(Erased && "Missing call site->function mapping");
 | 
						|
  }
 | 
						|
  FunctionToCallSitesMap.erase(F2C);
 | 
						|
}
 | 
						|
 | 
						|
void JITResolverState::EraseAllCallSitesPrelocked() {
 | 
						|
  StubToResolverMapTy &S2RMap = *StubToResolverMap;
 | 
						|
  for (CallSiteToFunctionMapTy::const_iterator
 | 
						|
         I = CallSiteToFunctionMap.begin(),
 | 
						|
         E = CallSiteToFunctionMap.end(); I != E; ++I) {
 | 
						|
    S2RMap.UnregisterStubResolver(I->first);
 | 
						|
  }
 | 
						|
  CallSiteToFunctionMap.clear();
 | 
						|
  FunctionToCallSitesMap.clear();
 | 
						|
}
 | 
						|
 | 
						|
JITResolver::~JITResolver() {
 | 
						|
  // No need to lock because we're in the destructor, and state isn't shared.
 | 
						|
  state.EraseAllCallSitesPrelocked();
 | 
						|
  assert(!StubToResolverMap->ResolverHasStubs(this) &&
 | 
						|
         "Resolver destroyed with stubs still alive.");
 | 
						|
}
 | 
						|
 | 
						|
/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
 | 
						|
/// if it has already been created.
 | 
						|
void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
 | 
						|
  MutexGuard locked(TheJIT->lock);
 | 
						|
 | 
						|
  // If we already have a stub for this function, recycle it.
 | 
						|
  return state.getFunctionToLazyStubMap(locked).lookup(F);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionStub - This returns a pointer to a function stub, creating
 | 
						|
/// one on demand as needed.
 | 
						|
void *JITResolver::getLazyFunctionStub(Function *F) {
 | 
						|
  MutexGuard locked(TheJIT->lock);
 | 
						|
 | 
						|
  // If we already have a lazy stub for this function, recycle it.
 | 
						|
  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
 | 
						|
  if (Stub) return Stub;
 | 
						|
 | 
						|
  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
 | 
						|
  // must resolve the symbol now.
 | 
						|
  void *Actual = TheJIT->isCompilingLazily()
 | 
						|
    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
 | 
						|
 | 
						|
  // If this is an external declaration, attempt to resolve the address now
 | 
						|
  // to place in the stub.
 | 
						|
  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
 | 
						|
    Actual = TheJIT->getPointerToFunction(F);
 | 
						|
 | 
						|
    // If we resolved the symbol to a null address (eg. a weak external)
 | 
						|
    // don't emit a stub. Return a null pointer to the application.
 | 
						|
    if (!Actual) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
 | 
						|
  JE.startGVStub(F, SL.Size, SL.Alignment);
 | 
						|
  // Codegen a new stub, calling the lazy resolver or the actual address of the
 | 
						|
  // external function, if it was resolved.
 | 
						|
  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
 | 
						|
  JE.finishGVStub();
 | 
						|
 | 
						|
  if (Actual != (void*)(intptr_t)LazyResolverFn) {
 | 
						|
    // If we are getting the stub for an external function, we really want the
 | 
						|
    // address of the stub in the GlobalAddressMap for the JIT, not the address
 | 
						|
    // of the external function.
 | 
						|
    TheJIT->updateGlobalMapping(F, Stub);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
 | 
						|
        << F->getName() << "'\n");
 | 
						|
 | 
						|
  if (TheJIT->isCompilingLazily()) {
 | 
						|
    // Register this JITResolver as the one corresponding to this call site so
 | 
						|
    // JITCompilerFn will be able to find it.
 | 
						|
    StubToResolverMap->RegisterStubResolver(Stub, this);
 | 
						|
 | 
						|
    // Finally, keep track of the stub-to-Function mapping so that the
 | 
						|
    // JITCompilerFn knows which function to compile!
 | 
						|
    state.AddCallSite(locked, Stub, F);
 | 
						|
  } else if (!Actual) {
 | 
						|
    // If we are JIT'ing non-lazily but need to call a function that does not
 | 
						|
    // exist yet, add it to the JIT's work list so that we can fill in the
 | 
						|
    // stub address later.
 | 
						|
    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
 | 
						|
           "'Actual' should have been set above.");
 | 
						|
    TheJIT->addPendingFunction(F);
 | 
						|
  }
 | 
						|
 | 
						|
  return Stub;
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
 | 
						|
/// GV address.
 | 
						|
void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
 | 
						|
  MutexGuard locked(TheJIT->lock);
 | 
						|
 | 
						|
  // If we already have a stub for this global variable, recycle it.
 | 
						|
  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
 | 
						|
  if (IndirectSym) return IndirectSym;
 | 
						|
 | 
						|
  // Otherwise, codegen a new indirect symbol.
 | 
						|
  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
 | 
						|
                                                                JE);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
 | 
						|
        << "] for GV '" << GV->getName() << "'\n");
 | 
						|
 | 
						|
  return IndirectSym;
 | 
						|
}
 | 
						|
 | 
						|
/// getExternalFunctionStub - Return a stub for the function at the
 | 
						|
/// specified address, created lazily on demand.
 | 
						|
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
 | 
						|
  // If we already have a stub for this function, recycle it.
 | 
						|
  void *&Stub = ExternalFnToStubMap[FnAddr];
 | 
						|
  if (Stub) return Stub;
 | 
						|
 | 
						|
  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
 | 
						|
  JE.startGVStub(0, SL.Size, SL.Alignment);
 | 
						|
  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
 | 
						|
  JE.finishGVStub();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
 | 
						|
               << "] for external function at '" << FnAddr << "'\n");
 | 
						|
  return Stub;
 | 
						|
}
 | 
						|
 | 
						|
unsigned JITResolver::getGOTIndexForAddr(void* addr) {
 | 
						|
  unsigned idx = revGOTMap[addr];
 | 
						|
  if (!idx) {
 | 
						|
    idx = ++nextGOTIndex;
 | 
						|
    revGOTMap[addr] = idx;
 | 
						|
    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
 | 
						|
                 << addr << "]\n");
 | 
						|
  }
 | 
						|
  return idx;
 | 
						|
}
 | 
						|
 | 
						|
/// JITCompilerFn - This function is called when a lazy compilation stub has
 | 
						|
/// been entered.  It looks up which function this stub corresponds to, compiles
 | 
						|
/// it if necessary, then returns the resultant function pointer.
 | 
						|
void *JITResolver::JITCompilerFn(void *Stub) {
 | 
						|
  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
 | 
						|
  assert(JR && "Unable to find the corresponding JITResolver to the call site");
 | 
						|
 | 
						|
  Function* F = 0;
 | 
						|
  void* ActualPtr = 0;
 | 
						|
 | 
						|
  {
 | 
						|
    // Only lock for getting the Function. The call getPointerToFunction made
 | 
						|
    // in this function might trigger function materializing, which requires
 | 
						|
    // JIT lock to be unlocked.
 | 
						|
    MutexGuard locked(JR->TheJIT->lock);
 | 
						|
 | 
						|
    // The address given to us for the stub may not be exactly right, it might
 | 
						|
    // be a little bit after the stub.  As such, use upper_bound to find it.
 | 
						|
    pair<void*, Function*> I =
 | 
						|
      JR->state.LookupFunctionFromCallSite(locked, Stub);
 | 
						|
    F = I.second;
 | 
						|
    ActualPtr = I.first;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have already code generated the function, just return the address.
 | 
						|
  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
 | 
						|
 | 
						|
  if (!Result) {
 | 
						|
    // Otherwise we don't have it, do lazy compilation now.
 | 
						|
 | 
						|
    // If lazy compilation is disabled, emit a useful error message and abort.
 | 
						|
    if (!JR->TheJIT->isCompilingLazily()) {
 | 
						|
      report_fatal_error("LLVM JIT requested to do lazy compilation of function '"
 | 
						|
                        + F->getName() + "' when lazy compiles are disabled!");
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
 | 
						|
          << "' In stub ptr = " << Stub << " actual ptr = "
 | 
						|
          << ActualPtr << "\n");
 | 
						|
 | 
						|
    Result = JR->TheJIT->getPointerToFunction(F);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reacquire the lock to update the GOT map.
 | 
						|
  MutexGuard locked(JR->TheJIT->lock);
 | 
						|
 | 
						|
  // We might like to remove the call site from the CallSiteToFunction map, but
 | 
						|
  // we can't do that! Multiple threads could be stuck, waiting to acquire the
 | 
						|
  // lock above. As soon as the 1st function finishes compiling the function,
 | 
						|
  // the next one will be released, and needs to be able to find the function it
 | 
						|
  // needs to call.
 | 
						|
 | 
						|
  // FIXME: We could rewrite all references to this stub if we knew them.
 | 
						|
 | 
						|
  // What we will do is set the compiled function address to map to the
 | 
						|
  // same GOT entry as the stub so that later clients may update the GOT
 | 
						|
  // if they see it still using the stub address.
 | 
						|
  // Note: this is done so the Resolver doesn't have to manage GOT memory
 | 
						|
  // Do this without allocating map space if the target isn't using a GOT
 | 
						|
  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
 | 
						|
    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// JITEmitter code.
 | 
						|
//
 | 
						|
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
 | 
						|
                                     bool MayNeedFarStub) {
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return TheJIT->getOrEmitGlobalVariable(GV);
 | 
						|
 | 
						|
  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | 
						|
    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
 | 
						|
 | 
						|
  // If we have already compiled the function, return a pointer to its body.
 | 
						|
  Function *F = cast<Function>(V);
 | 
						|
 | 
						|
  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
 | 
						|
  if (FnStub) {
 | 
						|
    // Return the function stub if it's already created.  We do this first so
 | 
						|
    // that we're returning the same address for the function as any previous
 | 
						|
    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
 | 
						|
    // close enough to call.
 | 
						|
    return FnStub;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we know the target can handle arbitrary-distance calls, try to
 | 
						|
  // return a direct pointer.
 | 
						|
  if (!MayNeedFarStub) {
 | 
						|
    // If we have code, go ahead and return that.
 | 
						|
    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
 | 
						|
    if (ResultPtr) return ResultPtr;
 | 
						|
 | 
						|
    // If this is an external function pointer, we can force the JIT to
 | 
						|
    // 'compile' it, which really just adds it to the map.
 | 
						|
    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
 | 
						|
      return TheJIT->getPointerToFunction(F);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
 | 
						|
  // so.  Note that it's possible to return null from getLazyFunctionStub in the
 | 
						|
  // case of a weak extern that fails to resolve.
 | 
						|
  return Resolver.getLazyFunctionStub(F);
 | 
						|
}
 | 
						|
 | 
						|
void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
 | 
						|
  // Make sure GV is emitted first, and create a stub containing the fully
 | 
						|
  // resolved address.
 | 
						|
  void *GVAddress = getPointerToGlobal(V, Reference, false);
 | 
						|
  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
 | 
						|
  return StubAddr;
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
 | 
						|
  if (DL.isUnknown()) return;
 | 
						|
  if (!BeforePrintingInsn) return;
 | 
						|
  
 | 
						|
  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
 | 
						|
 | 
						|
  if (DL.getScope(Context) != 0 && PrevDL != DL) {
 | 
						|
    JITEvent_EmittedFunctionDetails::LineStart NextLine;
 | 
						|
    NextLine.Address = getCurrentPCValue();
 | 
						|
    NextLine.Loc = DL;
 | 
						|
    EmissionDetails.LineStarts.push_back(NextLine);
 | 
						|
  }
 | 
						|
 | 
						|
  PrevDL = DL;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
 | 
						|
                                           const TargetData *TD) {
 | 
						|
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | 
						|
  if (Constants.empty()) return 0;
 | 
						|
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | 
						|
    MachineConstantPoolEntry CPE = Constants[i];
 | 
						|
    unsigned AlignMask = CPE.getAlignment() - 1;
 | 
						|
    Size = (Size + AlignMask) & ~AlignMask;
 | 
						|
    const Type *Ty = CPE.getType();
 | 
						|
    Size += TD->getTypeAllocSize(Ty);
 | 
						|
  }
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::startFunction(MachineFunction &F) {
 | 
						|
  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
 | 
						|
        << F.getFunction()->getName() << "\n");
 | 
						|
 | 
						|
  uintptr_t ActualSize = 0;
 | 
						|
  // Set the memory writable, if it's not already
 | 
						|
  MemMgr->setMemoryWritable();
 | 
						|
  
 | 
						|
  if (SizeEstimate > 0) {
 | 
						|
    // SizeEstimate will be non-zero on reallocation attempts.
 | 
						|
    ActualSize = SizeEstimate;
 | 
						|
  }
 | 
						|
 | 
						|
  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
 | 
						|
                                                         ActualSize);
 | 
						|
  BufferEnd = BufferBegin+ActualSize;
 | 
						|
  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
 | 
						|
 | 
						|
  // Ensure the constant pool/jump table info is at least 4-byte aligned.
 | 
						|
  emitAlignment(16);
 | 
						|
 | 
						|
  emitConstantPool(F.getConstantPool());
 | 
						|
  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
 | 
						|
    initJumpTableInfo(MJTI);
 | 
						|
 | 
						|
  // About to start emitting the machine code for the function.
 | 
						|
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
 | 
						|
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
 | 
						|
  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
 | 
						|
 | 
						|
  MBBLocations.clear();
 | 
						|
 | 
						|
  EmissionDetails.MF = &F;
 | 
						|
  EmissionDetails.LineStarts.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool JITEmitter::finishFunction(MachineFunction &F) {
 | 
						|
  if (CurBufferPtr == BufferEnd) {
 | 
						|
    // We must call endFunctionBody before retrying, because
 | 
						|
    // deallocateMemForFunction requires it.
 | 
						|
    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
 | 
						|
    retryWithMoreMemory(F);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
 | 
						|
    emitJumpTableInfo(MJTI);
 | 
						|
 | 
						|
  // FnStart is the start of the text, not the start of the constant pool and
 | 
						|
  // other per-function data.
 | 
						|
  uint8_t *FnStart =
 | 
						|
    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
 | 
						|
 | 
						|
  // FnEnd is the end of the function's machine code.
 | 
						|
  uint8_t *FnEnd = CurBufferPtr;
 | 
						|
 | 
						|
  if (!Relocations.empty()) {
 | 
						|
    CurFn = F.getFunction();
 | 
						|
    NumRelos += Relocations.size();
 | 
						|
 | 
						|
    // Resolve the relocations to concrete pointers.
 | 
						|
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
 | 
						|
      MachineRelocation &MR = Relocations[i];
 | 
						|
      void *ResultPtr = 0;
 | 
						|
      if (!MR.letTargetResolve()) {
 | 
						|
        if (MR.isExternalSymbol()) {
 | 
						|
          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
 | 
						|
                                                        false);
 | 
						|
          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
 | 
						|
                       << ResultPtr << "]\n");
 | 
						|
 | 
						|
          // If the target REALLY wants a stub for this function, emit it now.
 | 
						|
          if (MR.mayNeedFarStub()) {
 | 
						|
            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
 | 
						|
          }
 | 
						|
        } else if (MR.isGlobalValue()) {
 | 
						|
          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
 | 
						|
                                         BufferBegin+MR.getMachineCodeOffset(),
 | 
						|
                                         MR.mayNeedFarStub());
 | 
						|
        } else if (MR.isIndirectSymbol()) {
 | 
						|
          ResultPtr = getPointerToGVIndirectSym(
 | 
						|
              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
 | 
						|
        } else if (MR.isBasicBlock()) {
 | 
						|
          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
 | 
						|
        } else if (MR.isConstantPoolIndex()) {
 | 
						|
          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
 | 
						|
        } else {
 | 
						|
          assert(MR.isJumpTableIndex());
 | 
						|
          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
 | 
						|
        }
 | 
						|
 | 
						|
        MR.setResultPointer(ResultPtr);
 | 
						|
      }
 | 
						|
 | 
						|
      // if we are managing the GOT and the relocation wants an index,
 | 
						|
      // give it one
 | 
						|
      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
 | 
						|
        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
 | 
						|
        MR.setGOTIndex(idx);
 | 
						|
        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
 | 
						|
          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
 | 
						|
                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
 | 
						|
                       << "\n");
 | 
						|
          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    CurFn = 0;
 | 
						|
    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
 | 
						|
                                  Relocations.size(), MemMgr->getGOTBase());
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the GOT entry for F to point to the new code.
 | 
						|
  if (MemMgr->isManagingGOT()) {
 | 
						|
    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
 | 
						|
    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
 | 
						|
      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
 | 
						|
                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
 | 
						|
                   << "\n");
 | 
						|
      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
 | 
						|
  // global variables that were referenced in the relocations.
 | 
						|
  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
 | 
						|
 | 
						|
  if (CurBufferPtr == BufferEnd) {
 | 
						|
    retryWithMoreMemory(F);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    // Now that we've succeeded in emitting the function, reset the
 | 
						|
    // SizeEstimate back down to zero.
 | 
						|
    SizeEstimate = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  BufferBegin = CurBufferPtr = 0;
 | 
						|
  NumBytes += FnEnd-FnStart;
 | 
						|
 | 
						|
  // Invalidate the icache if necessary.
 | 
						|
  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
 | 
						|
 | 
						|
  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
 | 
						|
                                EmissionDetails);
 | 
						|
 | 
						|
  // Reset the previous debug location.
 | 
						|
  PrevDL = DebugLoc();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
 | 
						|
        << "] Function: " << F.getFunction()->getName()
 | 
						|
        << ": " << (FnEnd-FnStart) << " bytes of text, "
 | 
						|
        << Relocations.size() << " relocations\n");
 | 
						|
 | 
						|
  Relocations.clear();
 | 
						|
  ConstPoolAddresses.clear();
 | 
						|
 | 
						|
  // Mark code region readable and executable if it's not so already.
 | 
						|
  MemMgr->setMemoryExecutable();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      if (sys::hasDisassembler()) {
 | 
						|
        dbgs() << "JIT: Disassembled code:\n";
 | 
						|
        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
 | 
						|
                                         (uintptr_t)FnStart);
 | 
						|
      } else {
 | 
						|
        dbgs() << "JIT: Binary code:\n";
 | 
						|
        uint8_t* q = FnStart;
 | 
						|
        for (int i = 0; q < FnEnd; q += 4, ++i) {
 | 
						|
          if (i == 4)
 | 
						|
            i = 0;
 | 
						|
          if (i == 0)
 | 
						|
            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
 | 
						|
          bool Done = false;
 | 
						|
          for (int j = 3; j >= 0; --j) {
 | 
						|
            if (q + j >= FnEnd)
 | 
						|
              Done = true;
 | 
						|
            else
 | 
						|
              dbgs() << (unsigned short)q[j];
 | 
						|
          }
 | 
						|
          if (Done)
 | 
						|
            break;
 | 
						|
          dbgs() << ' ';
 | 
						|
          if (i == 3)
 | 
						|
            dbgs() << '\n';
 | 
						|
        }
 | 
						|
        dbgs()<< '\n';
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
  if (JITExceptionHandling || JITEmitDebugInfo) {
 | 
						|
    uintptr_t ActualSize = 0;
 | 
						|
    SavedBufferBegin = BufferBegin;
 | 
						|
    SavedBufferEnd = BufferEnd;
 | 
						|
    SavedCurBufferPtr = CurBufferPtr;
 | 
						|
 | 
						|
    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
 | 
						|
                                                             ActualSize);
 | 
						|
    BufferEnd = BufferBegin+ActualSize;
 | 
						|
    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
 | 
						|
    uint8_t *EhStart;
 | 
						|
    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
 | 
						|
                                                EhStart);
 | 
						|
    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
 | 
						|
                              FrameRegister);
 | 
						|
    uint8_t *EhEnd = CurBufferPtr;
 | 
						|
    BufferBegin = SavedBufferBegin;
 | 
						|
    BufferEnd = SavedBufferEnd;
 | 
						|
    CurBufferPtr = SavedCurBufferPtr;
 | 
						|
 | 
						|
    if (JITExceptionHandling) {
 | 
						|
      TheJIT->RegisterTable(FrameRegister);
 | 
						|
    }
 | 
						|
 | 
						|
    if (JITEmitDebugInfo) {
 | 
						|
      DebugInfo I;
 | 
						|
      I.FnStart = FnStart;
 | 
						|
      I.FnEnd = FnEnd;
 | 
						|
      I.EhStart = EhStart;
 | 
						|
      I.EhEnd = EhEnd;
 | 
						|
      DR->RegisterFunction(F.getFunction(), I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MMI)
 | 
						|
    MMI->EndFunction();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
 | 
						|
  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
 | 
						|
  Relocations.clear();  // Clear the old relocations or we'll reapply them.
 | 
						|
  ConstPoolAddresses.clear();
 | 
						|
  ++NumRetries;
 | 
						|
  deallocateMemForFunction(F.getFunction());
 | 
						|
  // Try again with at least twice as much free space.
 | 
						|
  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
 | 
						|
 | 
						|
  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
 | 
						|
    if (MBB->hasAddressTaken())
 | 
						|
      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// deallocateMemForFunction - Deallocate all memory for the specified
 | 
						|
/// function body.  Also drop any references the function has to stubs.
 | 
						|
/// May be called while the Function is being destroyed inside ~Value().
 | 
						|
void JITEmitter::deallocateMemForFunction(const Function *F) {
 | 
						|
  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
 | 
						|
    Emitted = EmittedFunctions.find(F);
 | 
						|
  if (Emitted != EmittedFunctions.end()) {
 | 
						|
    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
 | 
						|
    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
 | 
						|
    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
 | 
						|
 | 
						|
    EmittedFunctions.erase(Emitted);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Do we need to unregister exception handling information from libgcc
 | 
						|
  // here?
 | 
						|
 | 
						|
  if (JITEmitDebugInfo) {
 | 
						|
    DR->UnregisterFunction(F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
 | 
						|
  if (BufferBegin)
 | 
						|
    return JITCodeEmitter::allocateSpace(Size, Alignment);
 | 
						|
 | 
						|
  // create a new memory block if there is no active one.
 | 
						|
  // care must be taken so that BufferBegin is invalidated when a
 | 
						|
  // block is trimmed
 | 
						|
  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
 | 
						|
  BufferEnd = BufferBegin+Size;
 | 
						|
  return CurBufferPtr;
 | 
						|
}
 | 
						|
 | 
						|
void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
 | 
						|
  // Delegate this call through the memory manager.
 | 
						|
  return MemMgr->allocateGlobal(Size, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
 | 
						|
  if (TheJIT->getJITInfo().hasCustomConstantPool())
 | 
						|
    return;
 | 
						|
 | 
						|
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
 | 
						|
  if (Constants.empty()) return;
 | 
						|
 | 
						|
  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
 | 
						|
  unsigned Align = MCP->getConstantPoolAlignment();
 | 
						|
  ConstantPoolBase = allocateSpace(Size, Align);
 | 
						|
  ConstantPool = MCP;
 | 
						|
 | 
						|
  if (ConstantPoolBase == 0) return;  // Buffer overflow.
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
 | 
						|
               << "] (size: " << Size << ", alignment: " << Align << ")\n");
 | 
						|
 | 
						|
  // Initialize the memory for all of the constant pool entries.
 | 
						|
  unsigned Offset = 0;
 | 
						|
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
 | 
						|
    MachineConstantPoolEntry CPE = Constants[i];
 | 
						|
    unsigned AlignMask = CPE.getAlignment() - 1;
 | 
						|
    Offset = (Offset + AlignMask) & ~AlignMask;
 | 
						|
 | 
						|
    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
 | 
						|
    ConstPoolAddresses.push_back(CAddr);
 | 
						|
    if (CPE.isMachineConstantPoolEntry()) {
 | 
						|
      // FIXME: add support to lower machine constant pool values into bytes!
 | 
						|
      report_fatal_error("Initialize memory with machine specific constant pool"
 | 
						|
                        "entry has not been implemented!");
 | 
						|
    }
 | 
						|
    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
 | 
						|
    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
 | 
						|
          dbgs().write_hex(CAddr) << "]\n");
 | 
						|
 | 
						|
    const Type *Ty = CPE.Val.ConstVal->getType();
 | 
						|
    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | 
						|
  if (TheJIT->getJITInfo().hasCustomJumpTables())
 | 
						|
    return;
 | 
						|
  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
 | 
						|
    return;
 | 
						|
 | 
						|
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | 
						|
  if (JT.empty()) return;
 | 
						|
 | 
						|
  unsigned NumEntries = 0;
 | 
						|
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
 | 
						|
    NumEntries += JT[i].MBBs.size();
 | 
						|
 | 
						|
  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
 | 
						|
 | 
						|
  // Just allocate space for all the jump tables now.  We will fix up the actual
 | 
						|
  // MBB entries in the tables after we emit the code for each block, since then
 | 
						|
  // we will know the final locations of the MBBs in memory.
 | 
						|
  JumpTable = MJTI;
 | 
						|
  JumpTableBase = allocateSpace(NumEntries * EntrySize,
 | 
						|
                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
 | 
						|
  if (TheJIT->getJITInfo().hasCustomJumpTables())
 | 
						|
    return;
 | 
						|
 | 
						|
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | 
						|
  if (JT.empty() || JumpTableBase == 0) return;
 | 
						|
 | 
						|
  
 | 
						|
  switch (MJTI->getEntryKind()) {
 | 
						|
  case MachineJumpTableInfo::EK_Inline:
 | 
						|
    return;
 | 
						|
  case MachineJumpTableInfo::EK_BlockAddress: {
 | 
						|
    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
 | 
						|
    //     .word LBB123
 | 
						|
    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
 | 
						|
           "Cross JIT'ing?");
 | 
						|
    
 | 
						|
    // For each jump table, map each target in the jump table to the address of
 | 
						|
    // an emitted MachineBasicBlock.
 | 
						|
    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | 
						|
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | 
						|
      // Store the address of the basic block for this jump table slot in the
 | 
						|
      // memory we allocated for the jump table in 'initJumpTableInfo'
 | 
						|
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
 | 
						|
        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
      
 | 
						|
  case MachineJumpTableInfo::EK_Custom32:
 | 
						|
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
 | 
						|
  case MachineJumpTableInfo::EK_LabelDifference32: {
 | 
						|
    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
 | 
						|
    // For each jump table, place the offset from the beginning of the table
 | 
						|
    // to the target address.
 | 
						|
    int *SlotPtr = (int*)JumpTableBase;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
 | 
						|
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
 | 
						|
      // Store the offset of the basic block for this jump table slot in the
 | 
						|
      // memory we allocated for the jump table in 'initJumpTableInfo'
 | 
						|
      uintptr_t Base = (uintptr_t)SlotPtr;
 | 
						|
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
 | 
						|
        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
 | 
						|
        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
 | 
						|
        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::startGVStub(const GlobalValue* GV,
 | 
						|
                             unsigned StubSize, unsigned Alignment) {
 | 
						|
  SavedBufferBegin = BufferBegin;
 | 
						|
  SavedBufferEnd = BufferEnd;
 | 
						|
  SavedCurBufferPtr = CurBufferPtr;
 | 
						|
 | 
						|
  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
 | 
						|
  BufferEnd = BufferBegin+StubSize+1;
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
 | 
						|
  SavedBufferBegin = BufferBegin;
 | 
						|
  SavedBufferEnd = BufferEnd;
 | 
						|
  SavedCurBufferPtr = CurBufferPtr;
 | 
						|
 | 
						|
  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
 | 
						|
  BufferEnd = BufferBegin+StubSize+1;
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::finishGVStub() {
 | 
						|
  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
 | 
						|
  NumBytes += getCurrentPCOffset();
 | 
						|
  BufferBegin = SavedBufferBegin;
 | 
						|
  BufferEnd = SavedBufferEnd;
 | 
						|
  CurBufferPtr = SavedCurBufferPtr;
 | 
						|
}
 | 
						|
 | 
						|
void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
 | 
						|
                                  const uint8_t *Buffer, size_t Size,
 | 
						|
                                  unsigned Alignment) {
 | 
						|
  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
 | 
						|
  memcpy(IndGV, Buffer, Size);
 | 
						|
  return IndGV;
 | 
						|
}
 | 
						|
 | 
						|
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
 | 
						|
// in the constant pool that was last emitted with the 'emitConstantPool'
 | 
						|
// method.
 | 
						|
//
 | 
						|
uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
 | 
						|
  assert(ConstantNum < ConstantPool->getConstants().size() &&
 | 
						|
         "Invalid ConstantPoolIndex!");
 | 
						|
  return ConstPoolAddresses[ConstantNum];
 | 
						|
}
 | 
						|
 | 
						|
// getJumpTableEntryAddress - Return the address of the JumpTable with index
 | 
						|
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
 | 
						|
//
 | 
						|
uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
 | 
						|
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
 | 
						|
  assert(Index < JT.size() && "Invalid jump table index!");
 | 
						|
 | 
						|
  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
 | 
						|
 | 
						|
  unsigned Offset = 0;
 | 
						|
  for (unsigned i = 0; i < Index; ++i)
 | 
						|
    Offset += JT[i].MBBs.size();
 | 
						|
 | 
						|
   Offset *= EntrySize;
 | 
						|
 | 
						|
  return (uintptr_t)((char *)JumpTableBase + Offset);
 | 
						|
}
 | 
						|
 | 
						|
void JITEmitter::EmittedFunctionConfig::onDelete(
 | 
						|
  JITEmitter *Emitter, const Function *F) {
 | 
						|
  Emitter->deallocateMemForFunction(F);
 | 
						|
}
 | 
						|
void JITEmitter::EmittedFunctionConfig::onRAUW(
 | 
						|
  JITEmitter *, const Function*, const Function*) {
 | 
						|
  llvm_unreachable("The JIT doesn't know how to handle a"
 | 
						|
                   " RAUW on a value it has emitted.");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Public interface to this file
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
 | 
						|
                                   TargetMachine &tm) {
 | 
						|
  return new JITEmitter(jit, JMM, tm);
 | 
						|
}
 | 
						|
 | 
						|
// getPointerToFunctionOrStub - If the specified function has been
 | 
						|
// code-gen'd, return a pointer to the function.  If not, compile it, or use
 | 
						|
// a stub to implement lazy compilation if available.
 | 
						|
//
 | 
						|
void *JIT::getPointerToFunctionOrStub(Function *F) {
 | 
						|
  // If we have already code generated the function, just return the address.
 | 
						|
  if (void *Addr = getPointerToGlobalIfAvailable(F))
 | 
						|
    return Addr;
 | 
						|
 | 
						|
  // Get a stub if the target supports it.
 | 
						|
  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | 
						|
  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | 
						|
  return JE->getJITResolver().getLazyFunctionStub(F);
 | 
						|
}
 | 
						|
 | 
						|
void JIT::updateFunctionStub(Function *F) {
 | 
						|
  // Get the empty stub we generated earlier.
 | 
						|
  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | 
						|
  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
 | 
						|
  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
 | 
						|
  void *Addr = getPointerToGlobalIfAvailable(F);
 | 
						|
  assert(Addr != Stub && "Function must have non-stub address to be updated.");
 | 
						|
 | 
						|
  // Tell the target jit info to rewrite the stub at the specified address,
 | 
						|
  // rather than creating a new one.
 | 
						|
  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
 | 
						|
  JE->startGVStub(Stub, layout.Size);
 | 
						|
  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
 | 
						|
  JE->finishGVStub();
 | 
						|
}
 | 
						|
 | 
						|
/// freeMachineCodeForFunction - release machine code memory for given Function.
 | 
						|
///
 | 
						|
void JIT::freeMachineCodeForFunction(Function *F) {
 | 
						|
  // Delete translation for this from the ExecutionEngine, so it will get
 | 
						|
  // retranslated next time it is used.
 | 
						|
  updateGlobalMapping(F, 0);
 | 
						|
 | 
						|
  // Free the actual memory for the function body and related stuff.
 | 
						|
  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
 | 
						|
  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
 | 
						|
}
 |