mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100756 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			728 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			728 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the DefaultJITMemoryManager class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jit"
 | 
						|
#include "llvm/ExecutionEngine/JITMemoryManager.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/System/Memory.h"
 | 
						|
#include <vector>
 | 
						|
#include <cassert>
 | 
						|
#include <climits>
 | 
						|
#include <cstring>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
 | 
						|
 | 
						|
JITMemoryManager::~JITMemoryManager() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Memory Block Implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// MemoryRangeHeader - For a range of memory, this is the header that we put
 | 
						|
  /// on the block of memory.  It is carefully crafted to be one word of memory.
 | 
						|
  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
 | 
						|
  /// which starts with this.
 | 
						|
  struct FreeRangeHeader;
 | 
						|
  struct MemoryRangeHeader {
 | 
						|
    /// ThisAllocated - This is true if this block is currently allocated.  If
 | 
						|
    /// not, this can be converted to a FreeRangeHeader.
 | 
						|
    unsigned ThisAllocated : 1;
 | 
						|
 | 
						|
    /// PrevAllocated - Keep track of whether the block immediately before us is
 | 
						|
    /// allocated.  If not, the word immediately before this header is the size
 | 
						|
    /// of the previous block.
 | 
						|
    unsigned PrevAllocated : 1;
 | 
						|
 | 
						|
    /// BlockSize - This is the size in bytes of this memory block,
 | 
						|
    /// including this header.
 | 
						|
    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
 | 
						|
 | 
						|
 | 
						|
    /// getBlockAfter - Return the memory block immediately after this one.
 | 
						|
    ///
 | 
						|
    MemoryRangeHeader &getBlockAfter() const {
 | 
						|
      return *(MemoryRangeHeader*)((char*)this+BlockSize);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getFreeBlockBefore - If the block before this one is free, return it,
 | 
						|
    /// otherwise return null.
 | 
						|
    FreeRangeHeader *getFreeBlockBefore() const {
 | 
						|
      if (PrevAllocated) return 0;
 | 
						|
      intptr_t PrevSize = ((intptr_t *)this)[-1];
 | 
						|
      return (FreeRangeHeader*)((char*)this-PrevSize);
 | 
						|
    }
 | 
						|
 | 
						|
    /// FreeBlock - Turn an allocated block into a free block, adjusting
 | 
						|
    /// bits in the object headers, and adding an end of region memory block.
 | 
						|
    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
 | 
						|
 | 
						|
    /// TrimAllocationToSize - If this allocated block is significantly larger
 | 
						|
    /// than NewSize, split it into two pieces (where the former is NewSize
 | 
						|
    /// bytes, including the header), and add the new block to the free list.
 | 
						|
    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
 | 
						|
                                          uint64_t NewSize);
 | 
						|
  };
 | 
						|
 | 
						|
  /// FreeRangeHeader - For a memory block that isn't already allocated, this
 | 
						|
  /// keeps track of the current block and has a pointer to the next free block.
 | 
						|
  /// Free blocks are kept on a circularly linked list.
 | 
						|
  struct FreeRangeHeader : public MemoryRangeHeader {
 | 
						|
    FreeRangeHeader *Prev;
 | 
						|
    FreeRangeHeader *Next;
 | 
						|
 | 
						|
    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
 | 
						|
    /// smaller than this size cannot be created.
 | 
						|
    static unsigned getMinBlockSize() {
 | 
						|
      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
 | 
						|
    /// known to be the size of the free block.  Set it for this block.
 | 
						|
    void SetEndOfBlockSizeMarker() {
 | 
						|
      void *EndOfBlock = (char*)this + BlockSize;
 | 
						|
      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
 | 
						|
    }
 | 
						|
 | 
						|
    FreeRangeHeader *RemoveFromFreeList() {
 | 
						|
      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
 | 
						|
      Next->Prev = Prev;
 | 
						|
      return Prev->Next = Next;
 | 
						|
    }
 | 
						|
 | 
						|
    void AddToFreeList(FreeRangeHeader *FreeList) {
 | 
						|
      Next = FreeList;
 | 
						|
      Prev = FreeList->Prev;
 | 
						|
      Prev->Next = this;
 | 
						|
      Next->Prev = this;
 | 
						|
    }
 | 
						|
 | 
						|
    /// GrowBlock - The block after this block just got deallocated.  Merge it
 | 
						|
    /// into the current block.
 | 
						|
    void GrowBlock(uintptr_t NewSize);
 | 
						|
 | 
						|
    /// AllocateBlock - Mark this entire block allocated, updating freelists
 | 
						|
    /// etc.  This returns a pointer to the circular free-list.
 | 
						|
    FreeRangeHeader *AllocateBlock();
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AllocateBlock - Mark this entire block allocated, updating freelists
 | 
						|
/// etc.  This returns a pointer to the circular free-list.
 | 
						|
FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
 | 
						|
  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
 | 
						|
         "Cannot allocate an allocated block!");
 | 
						|
  // Mark this block allocated.
 | 
						|
  ThisAllocated = 1;
 | 
						|
  getBlockAfter().PrevAllocated = 1;
 | 
						|
 | 
						|
  // Remove it from the free list.
 | 
						|
  return RemoveFromFreeList();
 | 
						|
}
 | 
						|
 | 
						|
/// FreeBlock - Turn an allocated block into a free block, adjusting
 | 
						|
/// bits in the object headers, and adding an end of region memory block.
 | 
						|
/// If possible, coalesce this block with neighboring blocks.  Return the
 | 
						|
/// FreeRangeHeader to allocate from.
 | 
						|
FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
 | 
						|
  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
 | 
						|
  assert(ThisAllocated && "This block is already free!");
 | 
						|
  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
 | 
						|
 | 
						|
  FreeRangeHeader *FreeListToReturn = FreeList;
 | 
						|
 | 
						|
  // If the block after this one is free, merge it into this block.
 | 
						|
  if (!FollowingBlock->ThisAllocated) {
 | 
						|
    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
 | 
						|
    // "FreeList" always needs to be a valid free block.  If we're about to
 | 
						|
    // coalesce with it, update our notion of what the free list is.
 | 
						|
    if (&FollowingFreeBlock == FreeList) {
 | 
						|
      FreeList = FollowingFreeBlock.Next;
 | 
						|
      FreeListToReturn = 0;
 | 
						|
      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
 | 
						|
    }
 | 
						|
    FollowingFreeBlock.RemoveFromFreeList();
 | 
						|
 | 
						|
    // Include the following block into this one.
 | 
						|
    BlockSize += FollowingFreeBlock.BlockSize;
 | 
						|
    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
 | 
						|
 | 
						|
    // Tell the block after the block we are coalescing that this block is
 | 
						|
    // allocated.
 | 
						|
    FollowingBlock->PrevAllocated = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
 | 
						|
 | 
						|
  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
 | 
						|
    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
 | 
						|
    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, mark this block free.
 | 
						|
  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
 | 
						|
  FollowingBlock->PrevAllocated = 0;
 | 
						|
  FreeBlock.ThisAllocated = 0;
 | 
						|
 | 
						|
  // Link this into the linked list of free blocks.
 | 
						|
  FreeBlock.AddToFreeList(FreeList);
 | 
						|
 | 
						|
  // Add a marker at the end of the block, indicating the size of this free
 | 
						|
  // block.
 | 
						|
  FreeBlock.SetEndOfBlockSizeMarker();
 | 
						|
  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
 | 
						|
}
 | 
						|
 | 
						|
/// GrowBlock - The block after this block just got deallocated.  Merge it
 | 
						|
/// into the current block.
 | 
						|
void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
 | 
						|
  assert(NewSize > BlockSize && "Not growing block?");
 | 
						|
  BlockSize = NewSize;
 | 
						|
  SetEndOfBlockSizeMarker();
 | 
						|
  getBlockAfter().PrevAllocated = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// TrimAllocationToSize - If this allocated block is significantly larger
 | 
						|
/// than NewSize, split it into two pieces (where the former is NewSize
 | 
						|
/// bytes, including the header), and add the new block to the free list.
 | 
						|
FreeRangeHeader *MemoryRangeHeader::
 | 
						|
TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
 | 
						|
  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
 | 
						|
         "Cannot deallocate part of an allocated block!");
 | 
						|
 | 
						|
  // Don't allow blocks to be trimmed below minimum required size
 | 
						|
  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
 | 
						|
 | 
						|
  // Round up size for alignment of header.
 | 
						|
  unsigned HeaderAlign = __alignof(FreeRangeHeader);
 | 
						|
  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
 | 
						|
 | 
						|
  // Size is now the size of the block we will remove from the start of the
 | 
						|
  // current block.
 | 
						|
  assert(NewSize <= BlockSize &&
 | 
						|
         "Allocating more space from this block than exists!");
 | 
						|
 | 
						|
  // If splitting this block will cause the remainder to be too small, do not
 | 
						|
  // split the block.
 | 
						|
  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
 | 
						|
    return FreeList;
 | 
						|
 | 
						|
  // Otherwise, we splice the required number of bytes out of this block, form
 | 
						|
  // a new block immediately after it, then mark this block allocated.
 | 
						|
  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
 | 
						|
 | 
						|
  // Change the size of this block.
 | 
						|
  BlockSize = NewSize;
 | 
						|
 | 
						|
  // Get the new block we just sliced out and turn it into a free block.
 | 
						|
  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
 | 
						|
  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
 | 
						|
  NewNextBlock.ThisAllocated = 0;
 | 
						|
  NewNextBlock.PrevAllocated = 1;
 | 
						|
  NewNextBlock.SetEndOfBlockSizeMarker();
 | 
						|
  FormerNextBlock.PrevAllocated = 0;
 | 
						|
  NewNextBlock.AddToFreeList(FreeList);
 | 
						|
  return &NewNextBlock;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Memory Block Implementation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class DefaultJITMemoryManager;
 | 
						|
 | 
						|
  class JITSlabAllocator : public SlabAllocator {
 | 
						|
    DefaultJITMemoryManager &JMM;
 | 
						|
  public:
 | 
						|
    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
 | 
						|
    virtual ~JITSlabAllocator() { }
 | 
						|
    virtual MemSlab *Allocate(size_t Size);
 | 
						|
    virtual void Deallocate(MemSlab *Slab);
 | 
						|
  };
 | 
						|
 | 
						|
  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
 | 
						|
  /// This splits a large block of MAP_NORESERVE'd memory into two
 | 
						|
  /// sections, one for function stubs, one for the functions themselves.  We
 | 
						|
  /// have to do this because we may need to emit a function stub while in the
 | 
						|
  /// middle of emitting a function, and we don't know how large the function we
 | 
						|
  /// are emitting is.
 | 
						|
  class DefaultJITMemoryManager : public JITMemoryManager {
 | 
						|
 | 
						|
    // Whether to poison freed memory.
 | 
						|
    bool PoisonMemory;
 | 
						|
 | 
						|
    /// LastSlab - This points to the last slab allocated and is used as the
 | 
						|
    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
 | 
						|
    /// stubs, data, and code contiguously in memory.  In general, however, this
 | 
						|
    /// is not possible because the NearBlock parameter is ignored on Windows
 | 
						|
    /// platforms and even on Unix it works on a best-effort pasis.
 | 
						|
    sys::MemoryBlock LastSlab;
 | 
						|
 | 
						|
    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
 | 
						|
    // confuse them with the blocks of memory described above.
 | 
						|
    std::vector<sys::MemoryBlock> CodeSlabs;
 | 
						|
    JITSlabAllocator BumpSlabAllocator;
 | 
						|
    BumpPtrAllocator StubAllocator;
 | 
						|
    BumpPtrAllocator DataAllocator;
 | 
						|
 | 
						|
    // Circular list of free blocks.
 | 
						|
    FreeRangeHeader *FreeMemoryList;
 | 
						|
 | 
						|
    // When emitting code into a memory block, this is the block.
 | 
						|
    MemoryRangeHeader *CurBlock;
 | 
						|
 | 
						|
    uint8_t *GOTBase;     // Target Specific reserved memory
 | 
						|
  public:
 | 
						|
    DefaultJITMemoryManager();
 | 
						|
    ~DefaultJITMemoryManager();
 | 
						|
 | 
						|
    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
 | 
						|
    /// last slab it allocated, so that subsequent allocations follow it.
 | 
						|
    sys::MemoryBlock allocateNewSlab(size_t size);
 | 
						|
 | 
						|
    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
 | 
						|
    /// least this much unless more is requested.
 | 
						|
    static const size_t DefaultCodeSlabSize;
 | 
						|
 | 
						|
    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
 | 
						|
    /// an allocation above SizeThreshold.
 | 
						|
    static const size_t DefaultSlabSize;
 | 
						|
 | 
						|
    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
 | 
						|
    /// should allocate a separate slab.
 | 
						|
    static const size_t DefaultSizeThreshold;
 | 
						|
 | 
						|
    void AllocateGOT();
 | 
						|
 | 
						|
    // Testing methods.
 | 
						|
    virtual bool CheckInvariants(std::string &ErrorStr);
 | 
						|
    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
 | 
						|
    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
 | 
						|
    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
 | 
						|
    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
 | 
						|
    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
 | 
						|
    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
 | 
						|
 | 
						|
    /// startFunctionBody - When a function starts, allocate a block of free
 | 
						|
    /// executable memory, returning a pointer to it and its actual size.
 | 
						|
    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
 | 
						|
 | 
						|
      FreeRangeHeader* candidateBlock = FreeMemoryList;
 | 
						|
      FreeRangeHeader* head = FreeMemoryList;
 | 
						|
      FreeRangeHeader* iter = head->Next;
 | 
						|
 | 
						|
      uintptr_t largest = candidateBlock->BlockSize;
 | 
						|
 | 
						|
      // Search for the largest free block
 | 
						|
      while (iter != head) {
 | 
						|
        if (iter->BlockSize > largest) {
 | 
						|
          largest = iter->BlockSize;
 | 
						|
          candidateBlock = iter;
 | 
						|
        }
 | 
						|
        iter = iter->Next;
 | 
						|
      }
 | 
						|
 | 
						|
      largest = largest - sizeof(MemoryRangeHeader);
 | 
						|
 | 
						|
      // If this block isn't big enough for the allocation desired, allocate
 | 
						|
      // another block of memory and add it to the free list.
 | 
						|
      if (largest < ActualSize ||
 | 
						|
          largest <= FreeRangeHeader::getMinBlockSize()) {
 | 
						|
        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
 | 
						|
        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
 | 
						|
      }
 | 
						|
 | 
						|
      // Select this candidate block for allocation
 | 
						|
      CurBlock = candidateBlock;
 | 
						|
 | 
						|
      // Allocate the entire memory block.
 | 
						|
      FreeMemoryList = candidateBlock->AllocateBlock();
 | 
						|
      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
 | 
						|
      return (uint8_t *)(CurBlock + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
 | 
						|
    /// memory from the OS and add it to the free list.  Returns the new
 | 
						|
    /// FreeRangeHeader at the base of the slab.
 | 
						|
    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
 | 
						|
      // If the user needs at least MinSize free memory, then we account for
 | 
						|
      // two MemoryRangeHeaders: the one in the user's block, and the one at the
 | 
						|
      // end of the slab.
 | 
						|
      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
 | 
						|
      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
 | 
						|
      sys::MemoryBlock B = allocateNewSlab(SlabSize);
 | 
						|
      CodeSlabs.push_back(B);
 | 
						|
      char *MemBase = (char*)(B.base());
 | 
						|
 | 
						|
      // Put a tiny allocated block at the end of the memory chunk, so when
 | 
						|
      // FreeBlock calls getBlockAfter it doesn't fall off the end.
 | 
						|
      MemoryRangeHeader *EndBlock =
 | 
						|
          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
 | 
						|
      EndBlock->ThisAllocated = 1;
 | 
						|
      EndBlock->PrevAllocated = 0;
 | 
						|
      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
 | 
						|
 | 
						|
      // Start out with a vast new block of free memory.
 | 
						|
      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
 | 
						|
      NewBlock->ThisAllocated = 0;
 | 
						|
      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
 | 
						|
      NewBlock->PrevAllocated = 1;
 | 
						|
      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
 | 
						|
      NewBlock->SetEndOfBlockSizeMarker();
 | 
						|
      NewBlock->AddToFreeList(FreeMemoryList);
 | 
						|
 | 
						|
      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
 | 
						|
             "The block was too small!");
 | 
						|
      return NewBlock;
 | 
						|
    }
 | 
						|
 | 
						|
    /// endFunctionBody - The function F is now allocated, and takes the memory
 | 
						|
    /// in the range [FunctionStart,FunctionEnd).
 | 
						|
    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
 | 
						|
                         uint8_t *FunctionEnd) {
 | 
						|
      assert(FunctionEnd > FunctionStart);
 | 
						|
      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
 | 
						|
             "Mismatched function start/end!");
 | 
						|
 | 
						|
      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
 | 
						|
 | 
						|
      // Release the memory at the end of this block that isn't needed.
 | 
						|
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | 
						|
    }
 | 
						|
 | 
						|
    /// allocateSpace - Allocate a memory block of the given size.  This method
 | 
						|
    /// cannot be called between calls to startFunctionBody and endFunctionBody.
 | 
						|
    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
 | 
						|
      CurBlock = FreeMemoryList;
 | 
						|
      FreeMemoryList = FreeMemoryList->AllocateBlock();
 | 
						|
 | 
						|
      uint8_t *result = (uint8_t *)(CurBlock + 1);
 | 
						|
 | 
						|
      if (Alignment == 0) Alignment = 1;
 | 
						|
      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
 | 
						|
               ~(intptr_t)(Alignment-1));
 | 
						|
 | 
						|
      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
 | 
						|
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | 
						|
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
 | 
						|
    /// allocateStub - Allocate memory for a function stub.
 | 
						|
    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
 | 
						|
                          unsigned Alignment) {
 | 
						|
      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
 | 
						|
    }
 | 
						|
 | 
						|
    /// allocateGlobal - Allocate memory for a global.
 | 
						|
    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
 | 
						|
      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
 | 
						|
    }
 | 
						|
 | 
						|
    /// startExceptionTable - Use startFunctionBody to allocate memory for the
 | 
						|
    /// function's exception table.
 | 
						|
    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
 | 
						|
      return startFunctionBody(F, ActualSize);
 | 
						|
    }
 | 
						|
 | 
						|
    /// endExceptionTable - The exception table of F is now allocated,
 | 
						|
    /// and takes the memory in the range [TableStart,TableEnd).
 | 
						|
    void endExceptionTable(const Function *F, uint8_t *TableStart,
 | 
						|
                           uint8_t *TableEnd, uint8_t* FrameRegister) {
 | 
						|
      assert(TableEnd > TableStart);
 | 
						|
      assert(TableStart == (uint8_t *)(CurBlock+1) &&
 | 
						|
             "Mismatched table start/end!");
 | 
						|
 | 
						|
      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
 | 
						|
 | 
						|
      // Release the memory at the end of this block that isn't needed.
 | 
						|
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | 
						|
    }
 | 
						|
 | 
						|
    uint8_t *getGOTBase() const {
 | 
						|
      return GOTBase;
 | 
						|
    }
 | 
						|
 | 
						|
    void deallocateBlock(void *Block) {
 | 
						|
      // Find the block that is allocated for this function.
 | 
						|
      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
 | 
						|
      assert(MemRange->ThisAllocated && "Block isn't allocated!");
 | 
						|
 | 
						|
      // Fill the buffer with garbage!
 | 
						|
      if (PoisonMemory) {
 | 
						|
        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
 | 
						|
      }
 | 
						|
 | 
						|
      // Free the memory.
 | 
						|
      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
 | 
						|
    }
 | 
						|
 | 
						|
    /// deallocateFunctionBody - Deallocate all memory for the specified
 | 
						|
    /// function body.
 | 
						|
    void deallocateFunctionBody(void *Body) {
 | 
						|
      if (Body) deallocateBlock(Body);
 | 
						|
    }
 | 
						|
 | 
						|
    /// deallocateExceptionTable - Deallocate memory for the specified
 | 
						|
    /// exception table.
 | 
						|
    void deallocateExceptionTable(void *ET) {
 | 
						|
      if (ET) deallocateBlock(ET);
 | 
						|
    }
 | 
						|
 | 
						|
    /// setMemoryWritable - When code generation is in progress,
 | 
						|
    /// the code pages may need permissions changed.
 | 
						|
    void setMemoryWritable()
 | 
						|
    {
 | 
						|
      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | 
						|
        sys::Memory::setWritable(CodeSlabs[i]);
 | 
						|
    }
 | 
						|
    /// setMemoryExecutable - When code generation is done and we're ready to
 | 
						|
    /// start execution, the code pages may need permissions changed.
 | 
						|
    void setMemoryExecutable()
 | 
						|
    {
 | 
						|
      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | 
						|
        sys::Memory::setExecutable(CodeSlabs[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /// setPoisonMemory - Controls whether we write garbage over freed memory.
 | 
						|
    ///
 | 
						|
    void setPoisonMemory(bool poison) {
 | 
						|
      PoisonMemory = poison;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
MemSlab *JITSlabAllocator::Allocate(size_t Size) {
 | 
						|
  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
 | 
						|
  MemSlab *Slab = (MemSlab*)B.base();
 | 
						|
  Slab->Size = B.size();
 | 
						|
  Slab->NextPtr = 0;
 | 
						|
  return Slab;
 | 
						|
}
 | 
						|
 | 
						|
void JITSlabAllocator::Deallocate(MemSlab *Slab) {
 | 
						|
  sys::MemoryBlock B(Slab, Slab->Size);
 | 
						|
  sys::Memory::ReleaseRWX(B);
 | 
						|
}
 | 
						|
 | 
						|
DefaultJITMemoryManager::DefaultJITMemoryManager()
 | 
						|
  :
 | 
						|
#ifdef NDEBUG
 | 
						|
    PoisonMemory(false),
 | 
						|
#else
 | 
						|
    PoisonMemory(true),
 | 
						|
#endif
 | 
						|
    LastSlab(0, 0),
 | 
						|
    BumpSlabAllocator(*this),
 | 
						|
    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
 | 
						|
    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
 | 
						|
 | 
						|
  // Allocate space for code.
 | 
						|
  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
 | 
						|
  CodeSlabs.push_back(MemBlock);
 | 
						|
  uint8_t *MemBase = (uint8_t*)MemBlock.base();
 | 
						|
 | 
						|
  // We set up the memory chunk with 4 mem regions, like this:
 | 
						|
  //  [ START
 | 
						|
  //    [ Free      #0 ] -> Large space to allocate functions from.
 | 
						|
  //    [ Allocated #1 ] -> Tiny space to separate regions.
 | 
						|
  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
 | 
						|
  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
 | 
						|
  //  END ]
 | 
						|
  //
 | 
						|
  // The last three blocks are never deallocated or touched.
 | 
						|
 | 
						|
  // Add MemoryRangeHeader to the end of the memory region, indicating that
 | 
						|
  // the space after the block of memory is allocated.  This is block #3.
 | 
						|
  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
 | 
						|
  Mem3->ThisAllocated = 1;
 | 
						|
  Mem3->PrevAllocated = 0;
 | 
						|
  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
 | 
						|
 | 
						|
  /// Add a tiny free region so that the free list always has one entry.
 | 
						|
  FreeRangeHeader *Mem2 =
 | 
						|
    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
 | 
						|
  Mem2->ThisAllocated = 0;
 | 
						|
  Mem2->PrevAllocated = 1;
 | 
						|
  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
 | 
						|
  Mem2->SetEndOfBlockSizeMarker();
 | 
						|
  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
 | 
						|
  Mem2->Next = Mem2;
 | 
						|
 | 
						|
  /// Add a tiny allocated region so that Mem2 is never coalesced away.
 | 
						|
  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
 | 
						|
  Mem1->ThisAllocated = 1;
 | 
						|
  Mem1->PrevAllocated = 0;
 | 
						|
  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
 | 
						|
 | 
						|
  // Add a FreeRangeHeader to the start of the function body region, indicating
 | 
						|
  // that the space is free.  Mark the previous block allocated so we never look
 | 
						|
  // at it.
 | 
						|
  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
 | 
						|
  Mem0->ThisAllocated = 0;
 | 
						|
  Mem0->PrevAllocated = 1;
 | 
						|
  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
 | 
						|
  Mem0->SetEndOfBlockSizeMarker();
 | 
						|
  Mem0->AddToFreeList(Mem2);
 | 
						|
 | 
						|
  // Start out with the freelist pointing to Mem0.
 | 
						|
  FreeMemoryList = Mem0;
 | 
						|
 | 
						|
  GOTBase = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void DefaultJITMemoryManager::AllocateGOT() {
 | 
						|
  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
 | 
						|
  GOTBase = new uint8_t[sizeof(void*) * 8192];
 | 
						|
  HasGOT = true;
 | 
						|
}
 | 
						|
 | 
						|
DefaultJITMemoryManager::~DefaultJITMemoryManager() {
 | 
						|
  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | 
						|
    sys::Memory::ReleaseRWX(CodeSlabs[i]);
 | 
						|
 | 
						|
  delete[] GOTBase;
 | 
						|
}
 | 
						|
 | 
						|
sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
 | 
						|
  // Allocate a new block close to the last one.
 | 
						|
  std::string ErrMsg;
 | 
						|
  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
 | 
						|
  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
 | 
						|
  if (B.base() == 0) {
 | 
						|
    report_fatal_error("Allocation failed when allocating new memory in the"
 | 
						|
                       " JIT\n" + Twine(ErrMsg));
 | 
						|
  }
 | 
						|
  LastSlab = B;
 | 
						|
  ++NumSlabs;
 | 
						|
  // Initialize the slab to garbage when debugging.
 | 
						|
  if (PoisonMemory) {
 | 
						|
    memset(B.base(), 0xCD, B.size());
 | 
						|
  }
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckInvariants - For testing only.  Return "" if all internal invariants
 | 
						|
/// are preserved, and a helpful error message otherwise.  For free and
 | 
						|
/// allocated blocks, make sure that adding BlockSize gives a valid block.
 | 
						|
/// For free blocks, make sure they're in the free list and that their end of
 | 
						|
/// block size marker is correct.  This function should return an error before
 | 
						|
/// accessing bad memory.  This function is defined here instead of in
 | 
						|
/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
 | 
						|
/// implementation details of DefaultJITMemoryManager.
 | 
						|
bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
 | 
						|
  raw_string_ostream Err(ErrorStr);
 | 
						|
 | 
						|
  // Construct a the set of FreeRangeHeader pointers so we can query it
 | 
						|
  // efficiently.
 | 
						|
  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
 | 
						|
  FreeRangeHeader* FreeHead = FreeMemoryList;
 | 
						|
  FreeRangeHeader* FreeRange = FreeHead;
 | 
						|
 | 
						|
  do {
 | 
						|
    // Check that the free range pointer is in the blocks we've allocated.
 | 
						|
    bool Found = false;
 | 
						|
    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
 | 
						|
         E = CodeSlabs.end(); I != E && !Found; ++I) {
 | 
						|
      char *Start = (char*)I->base();
 | 
						|
      char *End = Start + I->size();
 | 
						|
      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
 | 
						|
    }
 | 
						|
    if (!Found) {
 | 
						|
      Err << "Corrupt free list; points to " << FreeRange;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FreeRange->Next->Prev != FreeRange) {
 | 
						|
      Err << "Next and Prev pointers do not match.";
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, add it to the set.
 | 
						|
    FreeHdrSet.insert(FreeRange);
 | 
						|
    FreeRange = FreeRange->Next;
 | 
						|
  } while (FreeRange != FreeHead);
 | 
						|
 | 
						|
  // Go over each block, and look at each MemoryRangeHeader.
 | 
						|
  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
 | 
						|
       E = CodeSlabs.end(); I != E; ++I) {
 | 
						|
    char *Start = (char*)I->base();
 | 
						|
    char *End = Start + I->size();
 | 
						|
 | 
						|
    // Check each memory range.
 | 
						|
    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
 | 
						|
         Start <= (char*)Hdr && (char*)Hdr < End;
 | 
						|
         Hdr = &Hdr->getBlockAfter()) {
 | 
						|
      if (Hdr->ThisAllocated == 0) {
 | 
						|
        // Check that this range is in the free list.
 | 
						|
        if (!FreeHdrSet.count(Hdr)) {
 | 
						|
          Err << "Found free header at " << Hdr << " that is not in free list.";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Now make sure the size marker at the end of the block is correct.
 | 
						|
        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
 | 
						|
        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
 | 
						|
          Err << "Block size in header points out of current MemoryBlock.";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        if (Hdr->BlockSize != *Marker) {
 | 
						|
          Err << "End of block size marker (" << *Marker << ") "
 | 
						|
              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
 | 
						|
        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
 | 
						|
            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
 | 
						|
        return false;
 | 
						|
      } else if (!LastHdr && !Hdr->PrevAllocated) {
 | 
						|
        Err << "The first header should have PrevAllocated true.";
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember the last header.
 | 
						|
      LastHdr = Hdr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All invariants are preserved.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
 | 
						|
  return new DefaultJITMemoryManager();
 | 
						|
}
 | 
						|
 | 
						|
// Allocate memory for code in 512K slabs.
 | 
						|
const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
 | 
						|
 | 
						|
// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
 | 
						|
const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
 | 
						|
 | 
						|
// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
 | 
						|
const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
 |