mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129030 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1258 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1258 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the RAGreedy function pass for register allocation in
 | |
| // optimized builds.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "AllocationOrder.h"
 | |
| #include "InterferenceCache.h"
 | |
| #include "LiveDebugVariables.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "RegAllocBase.h"
 | |
| #include "Spiller.h"
 | |
| #include "SpillPlacement.h"
 | |
| #include "SplitKit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/PassAnalysisSupport.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/EdgeBundles.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineLoopRanges.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| 
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumGlobalSplits, "Number of split global live ranges");
 | |
| STATISTIC(NumLocalSplits,  "Number of split local live ranges");
 | |
| STATISTIC(NumEvicted,      "Number of interferences evicted");
 | |
| 
 | |
| static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
 | |
|                                        createGreedyRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
| class RAGreedy : public MachineFunctionPass,
 | |
|                  public RegAllocBase,
 | |
|                  private LiveRangeEdit::Delegate {
 | |
| 
 | |
|   // context
 | |
|   MachineFunction *MF;
 | |
|   BitVector ReservedRegs;
 | |
| 
 | |
|   // analyses
 | |
|   SlotIndexes *Indexes;
 | |
|   LiveStacks *LS;
 | |
|   MachineDominatorTree *DomTree;
 | |
|   MachineLoopInfo *Loops;
 | |
|   MachineLoopRanges *LoopRanges;
 | |
|   EdgeBundles *Bundles;
 | |
|   SpillPlacement *SpillPlacer;
 | |
| 
 | |
|   // state
 | |
|   std::auto_ptr<Spiller> SpillerInstance;
 | |
|   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
 | |
| 
 | |
|   // Live ranges pass through a number of stages as we try to allocate them.
 | |
|   // Some of the stages may also create new live ranges:
 | |
|   //
 | |
|   // - Region splitting.
 | |
|   // - Per-block splitting.
 | |
|   // - Local splitting.
 | |
|   // - Spilling.
 | |
|   //
 | |
|   // Ranges produced by one of the stages skip the previous stages when they are
 | |
|   // dequeued. This improves performance because we can skip interference checks
 | |
|   // that are unlikely to give any results. It also guarantees that the live
 | |
|   // range splitting algorithm terminates, something that is otherwise hard to
 | |
|   // ensure.
 | |
|   enum LiveRangeStage {
 | |
|     RS_New,      ///< Never seen before.
 | |
|     RS_First,    ///< First time in the queue.
 | |
|     RS_Second,   ///< Second time in the queue.
 | |
|     RS_Region,   ///< Produced by region splitting.
 | |
|     RS_Block,    ///< Produced by per-block splitting.
 | |
|     RS_Local,    ///< Produced by local splitting.
 | |
|     RS_Spill     ///< Produced by spilling.
 | |
|   };
 | |
| 
 | |
|   IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
 | |
| 
 | |
|   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
 | |
|     return LiveRangeStage(LRStage[VirtReg.reg]);
 | |
|   }
 | |
| 
 | |
|   template<typename Iterator>
 | |
|   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
 | |
|     LRStage.resize(MRI->getNumVirtRegs());
 | |
|     for (;Begin != End; ++Begin) {
 | |
|       unsigned Reg = (*Begin)->reg;
 | |
|       if (LRStage[Reg] == RS_New)
 | |
|         LRStage[Reg] = NewStage;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // splitting state.
 | |
|   std::auto_ptr<SplitAnalysis> SA;
 | |
|   std::auto_ptr<SplitEditor> SE;
 | |
| 
 | |
|   /// Cached per-block interference maps
 | |
|   InterferenceCache IntfCache;
 | |
| 
 | |
|   /// All basic blocks where the current register is live.
 | |
|   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
 | |
| 
 | |
|   /// Global live range splitting candidate info.
 | |
|   struct GlobalSplitCandidate {
 | |
|     unsigned PhysReg;
 | |
|     BitVector LiveBundles;
 | |
|   };
 | |
| 
 | |
|   /// Candidate info for for each PhysReg in AllocationOrder.
 | |
|   /// This vector never shrinks, but grows to the size of the largest register
 | |
|   /// class.
 | |
|   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
 | |
| 
 | |
|   /// For every instruction in SA->UseSlots, store the previous non-copy
 | |
|   /// instruction.
 | |
|   SmallVector<SlotIndex, 8> PrevSlot;
 | |
| 
 | |
| public:
 | |
|   RAGreedy();
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   virtual const char* getPassName() const {
 | |
|     return "Greedy Register Allocator";
 | |
|   }
 | |
| 
 | |
|   /// RAGreedy analysis usage.
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|   virtual void releaseMemory();
 | |
|   virtual Spiller &spiller() { return *SpillerInstance; }
 | |
|   virtual void enqueue(LiveInterval *LI);
 | |
|   virtual LiveInterval *dequeue();
 | |
|   virtual unsigned selectOrSplit(LiveInterval&,
 | |
|                                  SmallVectorImpl<LiveInterval*>&);
 | |
| 
 | |
|   /// Perform register allocation.
 | |
|   virtual bool runOnMachineFunction(MachineFunction &mf);
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   void LRE_WillEraseInstruction(MachineInstr*);
 | |
|   bool LRE_CanEraseVirtReg(unsigned);
 | |
|   void LRE_WillShrinkVirtReg(unsigned);
 | |
|   void LRE_DidCloneVirtReg(unsigned, unsigned);
 | |
| 
 | |
|   bool addSplitConstraints(unsigned, float&);
 | |
|   float calcGlobalSplitCost(unsigned, const BitVector&);
 | |
|   void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
 | |
|                          SmallVectorImpl<LiveInterval*>&);
 | |
|   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
 | |
|   SlotIndex getPrevMappedIndex(const MachineInstr*);
 | |
|   void calcPrevSlots();
 | |
|   unsigned nextSplitPoint(unsigned);
 | |
|   bool canEvictInterference(LiveInterval&, unsigned, float&);
 | |
| 
 | |
|   unsigned tryEvict(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
 | |
|                           SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
 | |
|     SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned trySplit(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<LiveInterval*>&);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char RAGreedy::ID = 0;
 | |
| 
 | |
| FunctionPass* llvm::createGreedyRegisterAllocator() {
 | |
|   return new RAGreedy();
 | |
| }
 | |
| 
 | |
| RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
 | |
|   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
 | |
|   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveDebugVariables>();
 | |
|   AU.addPreserved<LiveDebugVariables>();
 | |
|   if (StrongPHIElim)
 | |
|     AU.addRequiredID(StrongPHIEliminationID);
 | |
|   AU.addRequiredTransitive<RegisterCoalescer>();
 | |
|   AU.addRequired<CalculateSpillWeights>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addRequired<MachineLoopRanges>();
 | |
|   AU.addPreserved<MachineLoopRanges>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
|   AU.addPreserved<VirtRegMap>();
 | |
|   AU.addRequired<EdgeBundles>();
 | |
|   AU.addRequired<SpillPlacement>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     LiveRangeEdit delegate methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
 | |
|   // LRE itself will remove from SlotIndexes and parent basic block.
 | |
|   VRM->RemoveMachineInstrFromMaps(MI);
 | |
| }
 | |
| 
 | |
| bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
 | |
|   if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
 | |
|     unassign(LIS->getInterval(VirtReg), PhysReg);
 | |
|     return true;
 | |
|   }
 | |
|   // Unassigned virtreg is probably in the priority queue.
 | |
|   // RegAllocBase will erase it after dequeueing.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
 | |
|   unsigned PhysReg = VRM->getPhys(VirtReg);
 | |
|   if (!PhysReg)
 | |
|     return;
 | |
| 
 | |
|   // Register is assigned, put it back on the queue for reassignment.
 | |
|   LiveInterval &LI = LIS->getInterval(VirtReg);
 | |
|   unassign(LI, PhysReg);
 | |
|   enqueue(&LI);
 | |
| }
 | |
| 
 | |
| void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
 | |
|   // LRE may clone a virtual register because dead code elimination causes it to
 | |
|   // be split into connected components. Ensure that the new register gets the
 | |
|   // same stage as the parent.
 | |
|   LRStage.grow(New);
 | |
|   LRStage[New] = LRStage[Old];
 | |
| }
 | |
| 
 | |
| void RAGreedy::releaseMemory() {
 | |
|   SpillerInstance.reset(0);
 | |
|   LRStage.clear();
 | |
|   RegAllocBase::releaseMemory();
 | |
| }
 | |
| 
 | |
| void RAGreedy::enqueue(LiveInterval *LI) {
 | |
|   // Prioritize live ranges by size, assigning larger ranges first.
 | |
|   // The queue holds (size, reg) pairs.
 | |
|   const unsigned Size = LI->getSize();
 | |
|   const unsigned Reg = LI->reg;
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Can only enqueue virtual registers");
 | |
|   unsigned Prio;
 | |
| 
 | |
|   LRStage.grow(Reg);
 | |
|   if (LRStage[Reg] == RS_New)
 | |
|     LRStage[Reg] = RS_First;
 | |
| 
 | |
|   if (LRStage[Reg] == RS_Second)
 | |
|     // Unsplit ranges that couldn't be allocated immediately are deferred until
 | |
|     // everything else has been allocated. Long ranges are allocated last so
 | |
|     // they are split against realistic interference.
 | |
|     Prio = (1u << 31) - Size;
 | |
|   else {
 | |
|     // Everything else is allocated in long->short order. Long ranges that don't
 | |
|     // fit should be spilled ASAP so they don't create interference.
 | |
|     Prio = (1u << 31) + Size;
 | |
| 
 | |
|     // Boost ranges that have a physical register hint.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
 | |
|       Prio |= (1u << 30);
 | |
|   }
 | |
| 
 | |
|   Queue.push(std::make_pair(Prio, Reg));
 | |
| }
 | |
| 
 | |
| LiveInterval *RAGreedy::dequeue() {
 | |
|   if (Queue.empty())
 | |
|     return 0;
 | |
|   LiveInterval *LI = &LIS->getInterval(Queue.top().second);
 | |
|   Queue.pop();
 | |
|   return LI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Interference eviction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// canEvict - Return true if all interferences between VirtReg and PhysReg can
 | |
| /// be evicted. Set maxWeight to the maximal spill weight of an interference.
 | |
| bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                     float &MaxWeight) {
 | |
|   float Weight = 0;
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | |
|     // If there is 10 or more interferences, chances are one is smaller.
 | |
|     if (Q.collectInterferingVRegs(10) >= 10)
 | |
|       return false;
 | |
| 
 | |
|     // Check if any interfering live range is heavier than VirtReg.
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i];
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
 | |
|         return false;
 | |
|       if (Intf->weight >= VirtReg.weight)
 | |
|         return false;
 | |
|       Weight = std::max(Weight, Intf->weight);
 | |
|     }
 | |
|   }
 | |
|   MaxWeight = Weight;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// tryEvict - Try to evict all interferences for a physreg.
 | |
| /// @param  VirtReg Currently unassigned virtual register.
 | |
| /// @param  Order   Physregs to try.
 | |
| /// @return         Physreg to assign VirtReg, or 0.
 | |
| unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
 | |
|                             AllocationOrder &Order,
 | |
|                             SmallVectorImpl<LiveInterval*> &NewVRegs){
 | |
|   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   // Keep track of the lightest single interference seen so far.
 | |
|   float BestWeight = 0;
 | |
|   unsigned BestPhys = 0;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     float Weight = 0;
 | |
|     if (!canEvictInterference(VirtReg, PhysReg, Weight))
 | |
|       continue;
 | |
| 
 | |
|     // This is an eviction candidate.
 | |
|     DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
 | |
|                  << Weight << '\n');
 | |
|     if (BestPhys && Weight >= BestWeight)
 | |
|       continue;
 | |
| 
 | |
|     // Best so far.
 | |
|     BestPhys = PhysReg;
 | |
|     BestWeight = Weight;
 | |
|     // Stop if the hint can be used.
 | |
|     if (Order.isHint(PhysReg))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (!BestPhys)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | |
|     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i];
 | |
|       unassign(*Intf, VRM->getPhys(Intf->reg));
 | |
|       ++NumEvicted;
 | |
|       NewVRegs.push_back(Intf);
 | |
|     }
 | |
|   }
 | |
|   return BestPhys;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Region Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// addSplitConstraints - Fill out the SplitConstraints vector based on the
 | |
| /// interference pattern in Physreg and its aliases. Add the constraints to
 | |
| /// SpillPlacement and return the static cost of this split in Cost, assuming
 | |
| /// that all preferences in SplitConstraints are met.
 | |
| /// If it is evident that no bundles will be live, abort early and return false.
 | |
| bool RAGreedy::addSplitConstraints(unsigned PhysReg, float &Cost) {
 | |
|   InterferenceCache::Cursor Intf(IntfCache, PhysReg);
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
| 
 | |
|   // Reset interference dependent info.
 | |
|   SplitConstraints.resize(UseBlocks.size());
 | |
|   float StaticCost = 0;
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
 | |
| 
 | |
|     BC.Number = BI.MBB->getNumber();
 | |
|     Intf.moveToBlock(BC.Number);
 | |
|     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
|     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
| 
 | |
|     if (!Intf.hasInterference())
 | |
|       continue;
 | |
| 
 | |
|     // Number of spill code instructions to insert.
 | |
|     unsigned Ins = 0;
 | |
| 
 | |
|     // Interference for the live-in value.
 | |
|     if (BI.LiveIn) {
 | |
|       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
 | |
|         BC.Entry = SpillPlacement::MustSpill, ++Ins;
 | |
|       else if (Intf.first() < BI.FirstUse)
 | |
|         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
 | |
|       else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
 | |
|         ++Ins;
 | |
|     }
 | |
| 
 | |
|     // Interference for the live-out value.
 | |
|     if (BI.LiveOut) {
 | |
|       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
 | |
|         BC.Exit = SpillPlacement::MustSpill, ++Ins;
 | |
|       else if (Intf.last() > BI.LastUse)
 | |
|         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
 | |
|       else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
 | |
|         ++Ins;
 | |
|     }
 | |
| 
 | |
|     // Accumulate the total frequency of inserted spill code.
 | |
|     if (Ins)
 | |
|       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
 | |
|   }
 | |
| 
 | |
|   // Add constraints for use-blocks. Note that these are the only constraints
 | |
|   // that may add a positive bias, it is downhill from here.
 | |
|   SpillPlacer->addConstraints(SplitConstraints);
 | |
|   if (SpillPlacer->getPositiveNodes() == 0)
 | |
|     return false;
 | |
| 
 | |
|   Cost = StaticCost;
 | |
| 
 | |
|   // Now handle the live-through blocks without uses. These can only add
 | |
|   // negative bias, so we can abort whenever there are no more positive nodes.
 | |
|   // Compute constraints for a group of 8 blocks at a time.
 | |
|   const unsigned GroupSize = 8;
 | |
|   SpillPlacement::BlockConstraint BCS[GroupSize];
 | |
|   unsigned B = 0;
 | |
| 
 | |
|   ArrayRef<unsigned> ThroughBlocks = SA->getThroughBlocks();
 | |
|   for (unsigned i = 0; i != ThroughBlocks.size(); ++i) {
 | |
|     unsigned Number = ThroughBlocks[i];
 | |
|     assert(B < GroupSize && "Array overflow");
 | |
|     BCS[B].Number = Number;
 | |
|     Intf.moveToBlock(Number);
 | |
| 
 | |
|     if (Intf.hasInterference()) {
 | |
|       // Interference for the live-in value.
 | |
|       if (Intf.first() <= Indexes->getMBBStartIdx(Number))
 | |
|         BCS[B].Entry = SpillPlacement::MustSpill;
 | |
|       else
 | |
|         BCS[B].Entry = SpillPlacement::PrefSpill;
 | |
| 
 | |
|       // Interference for the live-out value.
 | |
|       if (Intf.last() >= SA->getLastSplitPoint(Number))
 | |
|         BCS[B].Exit = SpillPlacement::MustSpill;
 | |
|       else
 | |
|         BCS[B].Exit = SpillPlacement::PrefSpill;
 | |
|     } else {
 | |
|       // No interference, transparent block.
 | |
|       BCS[B].Entry = BCS[B].Exit = SpillPlacement::DontCare;
 | |
|     }
 | |
| 
 | |
|     if (++B == GroupSize) {
 | |
|       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
 | |
|       SpillPlacer->addConstraints(Array);
 | |
|       B = 0;
 | |
|       // Abort early when all hope is lost.
 | |
|       if (SpillPlacer->getPositiveNodes() == 0)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
 | |
|   SpillPlacer->addConstraints(Array);
 | |
|   return SpillPlacer->getPositiveNodes() != 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// calcGlobalSplitCost - Return the global split cost of following the split
 | |
| /// pattern in LiveBundles. This cost should be added to the local cost of the
 | |
| /// interference pattern in SplitConstraints.
 | |
| ///
 | |
| float RAGreedy::calcGlobalSplitCost(unsigned PhysReg,
 | |
|                                     const BitVector &LiveBundles) {
 | |
|   float GlobalCost = 0;
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
 | |
|     unsigned Ins = 0;
 | |
| 
 | |
|     if (BI.LiveIn)
 | |
|       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
 | |
|     if (BI.LiveOut)
 | |
|       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
 | |
|     if (Ins)
 | |
|       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
 | |
|   }
 | |
| 
 | |
|   InterferenceCache::Cursor Intf(IntfCache, PhysReg);
 | |
|   ArrayRef<unsigned> ThroughBlocks = SA->getThroughBlocks();
 | |
|   SplitConstraints.resize(UseBlocks.size() + ThroughBlocks.size());
 | |
|   for (unsigned i = 0; i != ThroughBlocks.size(); ++i) {
 | |
|     unsigned Number = ThroughBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
 | |
|     if (!RegIn && !RegOut)
 | |
|       continue;
 | |
|     if (RegIn && RegOut) {
 | |
|       // We need double spill code if this block has interference.
 | |
|       Intf.moveToBlock(Number);
 | |
|       if (Intf.hasInterference())
 | |
|         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
 | |
|       continue;
 | |
|     }
 | |
|     // live-in / stack-out or stack-in live-out.
 | |
|     GlobalCost += SpillPlacer->getBlockFrequency(Number);
 | |
|   }
 | |
|   return GlobalCost;
 | |
| }
 | |
| 
 | |
| /// splitAroundRegion - Split VirtReg around the region determined by
 | |
| /// LiveBundles. Make an effort to avoid interference from PhysReg.
 | |
| ///
 | |
| /// The 'register' interval is going to contain as many uses as possible while
 | |
| /// avoiding interference. The 'stack' interval is the complement constructed by
 | |
| /// SplitEditor. It will contain the rest.
 | |
| ///
 | |
| void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                  const BitVector &LiveBundles,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   DEBUG({
 | |
|     dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
 | |
|            << " with bundles";
 | |
|     for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
 | |
|       dbgs() << " EB#" << i;
 | |
|     dbgs() << ".\n";
 | |
|   });
 | |
| 
 | |
|   InterferenceCache::Cursor Intf(IntfCache, PhysReg);
 | |
|   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
 | |
|   SE->reset(LREdit);
 | |
| 
 | |
|   // Create the main cross-block interval.
 | |
|   SE->openIntv();
 | |
| 
 | |
|   // First add all defs that are live out of a block.
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | |
| 
 | |
|     // Should the register be live out?
 | |
|     if (!BI.LiveOut || !RegOut)
 | |
|       continue;
 | |
| 
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
|     Intf.moveToBlock(BI.MBB->getNumber());
 | |
|     DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
 | |
|                  << Bundles->getBundle(BI.MBB->getNumber(), 1)
 | |
|                  << " [" << Start << ';'
 | |
|                  << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
 | |
|                  << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
 | |
| 
 | |
|     // The interference interval should either be invalid or overlap MBB.
 | |
|     assert((!Intf.hasInterference() || Intf.first() < Stop)
 | |
|            && "Bad interference");
 | |
|     assert((!Intf.hasInterference() || Intf.last() > Start)
 | |
|            && "Bad interference");
 | |
| 
 | |
|     // Check interference leaving the block.
 | |
|     if (!Intf.hasInterference()) {
 | |
|       // Block is interference-free.
 | |
|       DEBUG(dbgs() << ", no interference");
 | |
|       if (!BI.LiveThrough) {
 | |
|         DEBUG(dbgs() << ", not live-through.\n");
 | |
|         SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
 | |
|         continue;
 | |
|       }
 | |
|       if (!RegIn) {
 | |
|         // Block is live-through, but entry bundle is on the stack.
 | |
|         // Reload just before the first use.
 | |
|         DEBUG(dbgs() << ", not live-in, enter before first use.\n");
 | |
|         SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
 | |
|         continue;
 | |
|       }
 | |
|       DEBUG(dbgs() << ", live-through.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Block has interference.
 | |
|     DEBUG(dbgs() << ", interference to " << Intf.last());
 | |
| 
 | |
|     if (!BI.LiveThrough && Intf.last() <= BI.Def) {
 | |
|       // The interference doesn't reach the outgoing segment.
 | |
|       DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
 | |
|       SE->useIntv(BI.Def, Stop);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
 | |
|     if (Intf.last().getBoundaryIndex() < BI.LastUse) {
 | |
|       // There are interference-free uses at the end of the block.
 | |
|       // Find the first use that can get the live-out register.
 | |
|       SmallVectorImpl<SlotIndex>::const_iterator UI =
 | |
|         std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | |
|                          Intf.last().getBoundaryIndex());
 | |
|       assert(UI != SA->UseSlots.end() && "Couldn't find last use");
 | |
|       SlotIndex Use = *UI;
 | |
|       assert(Use <= BI.LastUse && "Couldn't find last use");
 | |
|       // Only attempt a split befroe the last split point.
 | |
|       if (Use.getBaseIndex() <= LastSplitPoint) {
 | |
|         DEBUG(dbgs() << ", free use at " << Use << ".\n");
 | |
|         SlotIndex SegStart = SE->enterIntvBefore(Use);
 | |
|         assert(SegStart >= Intf.last() && "Couldn't avoid interference");
 | |
|         assert(SegStart < LastSplitPoint && "Impossible split point");
 | |
|         SE->useIntv(SegStart, Stop);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Interference is after the last use.
 | |
|     DEBUG(dbgs() << " after last use.\n");
 | |
|     SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
 | |
|     assert(SegStart >= Intf.last() && "Couldn't avoid interference");
 | |
|   }
 | |
| 
 | |
|   // Now all defs leading to live bundles are handled, do everything else.
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | |
| 
 | |
|     // Is the register live-in?
 | |
|     if (!BI.LiveIn || !RegIn)
 | |
|       continue;
 | |
| 
 | |
|     // We have an incoming register. Check for interference.
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
|     Intf.moveToBlock(BI.MBB->getNumber());
 | |
|     DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
 | |
|                  << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
 | |
|                  << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
 | |
|                  << ')');
 | |
| 
 | |
|     // Check interference entering the block.
 | |
|     if (!Intf.hasInterference()) {
 | |
|       // Block is interference-free.
 | |
|       DEBUG(dbgs() << ", no interference");
 | |
|       if (!BI.LiveThrough) {
 | |
|         DEBUG(dbgs() << ", killed in block.\n");
 | |
|         SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
 | |
|         continue;
 | |
|       }
 | |
|       if (!RegOut) {
 | |
|         SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
 | |
|         // Block is live-through, but exit bundle is on the stack.
 | |
|         // Spill immediately after the last use.
 | |
|         if (BI.LastUse < LastSplitPoint) {
 | |
|           DEBUG(dbgs() << ", uses, stack-out.\n");
 | |
|           SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
 | |
|           continue;
 | |
|         }
 | |
|         // The last use is after the last split point, it is probably an
 | |
|         // indirect jump.
 | |
|         DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
 | |
|                      << LastSplitPoint << ", stack-out.\n");
 | |
|         SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
 | |
|         SE->useIntv(Start, SegEnd);
 | |
|         // Run a double interval from the split to the last use.
 | |
|         // This makes it possible to spill the complement without affecting the
 | |
|         // indirect branch.
 | |
|         SE->overlapIntv(SegEnd, BI.LastUse);
 | |
|         continue;
 | |
|       }
 | |
|       // Register is live-through.
 | |
|       DEBUG(dbgs() << ", uses, live-through.\n");
 | |
|       SE->useIntv(Start, Stop);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Block has interference.
 | |
|     DEBUG(dbgs() << ", interference from " << Intf.first());
 | |
| 
 | |
|     if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
 | |
|       // The interference doesn't reach the outgoing segment.
 | |
|       DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
 | |
|       SE->useIntv(Start, BI.Kill);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Intf.first().getBaseIndex() > BI.FirstUse) {
 | |
|       // There are interference-free uses at the beginning of the block.
 | |
|       // Find the last use that can get the register.
 | |
|       SmallVectorImpl<SlotIndex>::const_iterator UI =
 | |
|         std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | |
|                          Intf.first().getBaseIndex());
 | |
|       assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
 | |
|       SlotIndex Use = (--UI)->getBoundaryIndex();
 | |
|       DEBUG(dbgs() << ", free use at " << *UI << ".\n");
 | |
|       SlotIndex SegEnd = SE->leaveIntvAfter(Use);
 | |
|       assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
 | |
|       SE->useIntv(Start, SegEnd);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Interference is before the first use.
 | |
|     DEBUG(dbgs() << " before first use.\n");
 | |
|     SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
 | |
|     assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
 | |
|   }
 | |
| 
 | |
|   // Handle live-through blocks.
 | |
|   ArrayRef<unsigned> ThroughBlocks = SA->getThroughBlocks();
 | |
|   for (unsigned i = 0; i != ThroughBlocks.size(); ++i) {
 | |
|     unsigned Number = ThroughBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
 | |
|     DEBUG(dbgs() << "Live through BB#" << Number << '\n');
 | |
|     if (RegIn && RegOut) {
 | |
|       Intf.moveToBlock(Number);
 | |
|       if (!Intf.hasInterference()) {
 | |
|         SE->useIntv(Indexes->getMBBStartIdx(Number),
 | |
|                     Indexes->getMBBEndIdx(Number));
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
 | |
|     if (RegIn)
 | |
|       SE->leaveIntvAtTop(*MBB);
 | |
|     if (RegOut)
 | |
|       SE->enterIntvAtEnd(*MBB);
 | |
|   }
 | |
| 
 | |
|   SE->closeIntv();
 | |
| 
 | |
|   // FIXME: Should we be more aggressive about splitting the stack region into
 | |
|   // per-block segments? The current approach allows the stack region to
 | |
|   // separate into connected components. Some components may be allocatable.
 | |
|   SE->finish();
 | |
|   ++NumGlobalSplits;
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "After splitting live range around region");
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   BitVector LiveBundles, BestBundles;
 | |
|   float BestCost = 0;
 | |
|   unsigned BestReg = 0;
 | |
| 
 | |
|   Order.rewind();
 | |
|   for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
 | |
|     if (GlobalCand.size() <= Cand)
 | |
|       GlobalCand.resize(Cand+1);
 | |
|     GlobalCand[Cand].PhysReg = PhysReg;
 | |
| 
 | |
|     SpillPlacer->prepare(LiveBundles);
 | |
|     float Cost;
 | |
|     if (!addSplitConstraints(PhysReg, Cost)) {
 | |
|       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bias\n");
 | |
|       continue;
 | |
|     }
 | |
|     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tbiased = "
 | |
|                  << SpillPlacer->getPositiveNodes() << ", static = " << Cost);
 | |
|     if (BestReg && Cost >= BestCost) {
 | |
|       DEBUG(dbgs() << " worse than " << PrintReg(BestReg, TRI) << '\n');
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SpillPlacer->finish();
 | |
| 
 | |
|     // No live bundles, defer to splitSingleBlocks().
 | |
|     if (!LiveBundles.any()) {
 | |
|       DEBUG(dbgs() << " no bundles.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Cost += calcGlobalSplitCost(PhysReg, LiveBundles);
 | |
|     DEBUG({
 | |
|       dbgs() << ", total = " << Cost << " with bundles";
 | |
|       for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
 | |
|         dbgs() << " EB#" << i;
 | |
|       dbgs() << ".\n";
 | |
|     });
 | |
|     if (!BestReg || Cost < BestCost) {
 | |
|       BestReg = PhysReg;
 | |
|       BestCost = 0.98f * Cost; // Prevent rounding effects.
 | |
|       BestBundles.swap(LiveBundles);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BestReg)
 | |
|     return 0;
 | |
| 
 | |
|   splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
 | |
|   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Local Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
 | |
| /// in order to use PhysReg between two entries in SA->UseSlots.
 | |
| ///
 | |
| /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
 | |
| ///
 | |
| void RAGreedy::calcGapWeights(unsigned PhysReg,
 | |
|                               SmallVectorImpl<float> &GapWeight) {
 | |
|   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   // Start and end points for the interference check.
 | |
|   SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
 | |
|   SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
 | |
| 
 | |
|   GapWeight.assign(NumGaps, 0.0f);
 | |
| 
 | |
|   // Add interference from each overlapping register.
 | |
|   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | |
|     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
 | |
|            .checkInterference())
 | |
|       continue;
 | |
| 
 | |
|     // We know that VirtReg is a continuous interval from FirstUse to LastUse,
 | |
|     // so we don't need InterferenceQuery.
 | |
|     //
 | |
|     // Interference that overlaps an instruction is counted in both gaps
 | |
|     // surrounding the instruction. The exception is interference before
 | |
|     // StartIdx and after StopIdx.
 | |
|     //
 | |
|     LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
 | |
|     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
 | |
|       // Skip the gaps before IntI.
 | |
|       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
 | |
|         if (++Gap == NumGaps)
 | |
|           break;
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
| 
 | |
|       // Update the gaps covered by IntI.
 | |
|       const float weight = IntI.value()->weight;
 | |
|       for (; Gap != NumGaps; ++Gap) {
 | |
|         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
 | |
|         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
 | |
|           break;
 | |
|       }
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPrevMappedIndex - Return the slot index of the last non-copy instruction
 | |
| /// before MI that has a slot index. If MI is the first mapped instruction in
 | |
| /// its block, return the block start index instead.
 | |
| ///
 | |
| SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
 | |
|   assert(MI && "Missing MachineInstr");
 | |
|   const MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
 | |
|   while (I != B)
 | |
|     if (!(--I)->isDebugValue() && !I->isCopy())
 | |
|       return Indexes->getInstructionIndex(I);
 | |
|   return Indexes->getMBBStartIdx(MBB);
 | |
| }
 | |
| 
 | |
| /// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
 | |
| /// real non-copy instruction for each instruction in SA->UseSlots.
 | |
| ///
 | |
| void RAGreedy::calcPrevSlots() {
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   PrevSlot.clear();
 | |
|   PrevSlot.reserve(Uses.size());
 | |
|   for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | |
|     const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
 | |
|     PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
 | |
| /// be beneficial to split before UseSlots[i].
 | |
| ///
 | |
| /// 0 is always a valid split point
 | |
| unsigned RAGreedy::nextSplitPoint(unsigned i) {
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   const unsigned Size = Uses.size();
 | |
|   assert(i != Size && "No split points after the end");
 | |
|   // Allow split before i when Uses[i] is not adjacent to the previous use.
 | |
|   while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
 | |
|     ;
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
 | |
| /// basic block.
 | |
| ///
 | |
| unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
 | |
| 
 | |
|   // Note that it is possible to have an interval that is live-in or live-out
 | |
|   // while only covering a single block - A phi-def can use undef values from
 | |
|   // predecessors, and the block could be a single-block loop.
 | |
|   // We don't bother doing anything clever about such a case, we simply assume
 | |
|   // that the interval is continuous from FirstUse to LastUse. We should make
 | |
|   // sure that we don't do anything illegal to such an interval, though.
 | |
| 
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   if (Uses.size() <= 2)
 | |
|     return 0;
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "tryLocalSplit: ";
 | |
|     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
 | |
|       dbgs() << ' ' << SA->UseSlots[i];
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   // For every use, find the previous mapped non-copy instruction.
 | |
|   // We use this to detect valid split points, and to estimate new interval
 | |
|   // sizes.
 | |
|   calcPrevSlots();
 | |
| 
 | |
|   unsigned BestBefore = NumGaps;
 | |
|   unsigned BestAfter = 0;
 | |
|   float BestDiff = 0;
 | |
| 
 | |
|   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
 | |
|   SmallVector<float, 8> GapWeight;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     // Keep track of the largest spill weight that would need to be evicted in
 | |
|     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
 | |
|     calcGapWeights(PhysReg, GapWeight);
 | |
| 
 | |
|     // Try to find the best sequence of gaps to close.
 | |
|     // The new spill weight must be larger than any gap interference.
 | |
| 
 | |
|     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
 | |
|     unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
 | |
| 
 | |
|     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
 | |
|     // It is the spill weight that needs to be evicted.
 | |
|     float MaxGap = GapWeight[0];
 | |
|     for (unsigned i = 1; i != SplitAfter; ++i)
 | |
|       MaxGap = std::max(MaxGap, GapWeight[i]);
 | |
| 
 | |
|     for (;;) {
 | |
|       // Live before/after split?
 | |
|       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
 | |
|       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
 | |
| 
 | |
|       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
 | |
|                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
 | |
|                    << " i=" << MaxGap);
 | |
| 
 | |
|       // Stop before the interval gets so big we wouldn't be making progress.
 | |
|       if (!LiveBefore && !LiveAfter) {
 | |
|         DEBUG(dbgs() << " all\n");
 | |
|         break;
 | |
|       }
 | |
|       // Should the interval be extended or shrunk?
 | |
|       bool Shrink = true;
 | |
|       if (MaxGap < HUGE_VALF) {
 | |
|         // Estimate the new spill weight.
 | |
|         //
 | |
|         // Each instruction reads and writes the register, except the first
 | |
|         // instr doesn't read when !FirstLive, and the last instr doesn't write
 | |
|         // when !LastLive.
 | |
|         //
 | |
|         // We will be inserting copies before and after, so the total number of
 | |
|         // reads and writes is 2 * EstUses.
 | |
|         //
 | |
|         const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
 | |
|                                  2*(LiveBefore + LiveAfter);
 | |
| 
 | |
|         // Try to guess the size of the new interval. This should be trivial,
 | |
|         // but the slot index of an inserted copy can be a lot smaller than the
 | |
|         // instruction it is inserted before if there are many dead indexes
 | |
|         // between them.
 | |
|         //
 | |
|         // We measure the distance from the instruction before SplitBefore to
 | |
|         // get a conservative estimate.
 | |
|         //
 | |
|         // The final distance can still be different if inserting copies
 | |
|         // triggers a slot index renumbering.
 | |
|         //
 | |
|         const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
 | |
|                               PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
 | |
|         // Would this split be possible to allocate?
 | |
|         // Never allocate all gaps, we wouldn't be making progress.
 | |
|         float Diff = EstWeight - MaxGap;
 | |
|         DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
 | |
|         if (Diff > 0) {
 | |
|           Shrink = false;
 | |
|           if (Diff > BestDiff) {
 | |
|             DEBUG(dbgs() << " (best)");
 | |
|             BestDiff = Diff;
 | |
|             BestBefore = SplitBefore;
 | |
|             BestAfter = SplitAfter;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Try to shrink.
 | |
|       if (Shrink) {
 | |
|         SplitBefore = nextSplitPoint(SplitBefore);
 | |
|         if (SplitBefore < SplitAfter) {
 | |
|           DEBUG(dbgs() << " shrink\n");
 | |
|           // Recompute the max when necessary.
 | |
|           if (GapWeight[SplitBefore - 1] >= MaxGap) {
 | |
|             MaxGap = GapWeight[SplitBefore];
 | |
|             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
 | |
|               MaxGap = std::max(MaxGap, GapWeight[i]);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         MaxGap = 0;
 | |
|       }
 | |
| 
 | |
|       // Try to extend the interval.
 | |
|       if (SplitAfter >= NumGaps) {
 | |
|         DEBUG(dbgs() << " end\n");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << " extend\n");
 | |
|       for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
 | |
|            SplitAfter != e; ++SplitAfter)
 | |
|         MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
 | |
|           continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Didn't find any candidates?
 | |
|   if (BestBefore == NumGaps)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
 | |
|                << '-' << Uses[BestAfter] << ", " << BestDiff
 | |
|                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
 | |
| 
 | |
|   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
 | |
|   SE->reset(LREdit);
 | |
| 
 | |
|   SE->openIntv();
 | |
|   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
 | |
|   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
 | |
|   SE->useIntv(SegStart, SegStop);
 | |
|   SE->closeIntv();
 | |
|   SE->finish();
 | |
|   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
 | |
|   ++NumLocalSplits;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Live Range Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// trySplit - Try to split VirtReg or one of its interferences, making it
 | |
| /// assignable.
 | |
| /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
 | |
| unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
 | |
|   // Local intervals are handled separately.
 | |
|   if (LIS->intervalIsInOneMBB(VirtReg)) {
 | |
|     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
|     SA->analyze(&VirtReg);
 | |
|     return tryLocalSplit(VirtReg, Order, NewVRegs);
 | |
|   }
 | |
| 
 | |
|   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   // Don't iterate global splitting.
 | |
|   // Move straight to spilling if this range was produced by a global split.
 | |
|   LiveRangeStage Stage = getStage(VirtReg);
 | |
|   if (Stage >= RS_Block)
 | |
|     return 0;
 | |
| 
 | |
|   SA->analyze(&VirtReg);
 | |
| 
 | |
|   // First try to split around a region spanning multiple blocks.
 | |
|   if (Stage < RS_Region) {
 | |
|     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
 | |
|     if (PhysReg || !NewVRegs.empty())
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   // Then isolate blocks with multiple uses.
 | |
|   if (Stage < RS_Block) {
 | |
|     SplitAnalysis::BlockPtrSet Blocks;
 | |
|     if (SA->getMultiUseBlocks(Blocks)) {
 | |
|       LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
 | |
|       SE->reset(LREdit);
 | |
|       SE->splitSingleBlocks(Blocks);
 | |
|       setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block);
 | |
|       if (VerifyEnabled)
 | |
|         MF->verify(this, "After splitting live range around basic blocks");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't assign any physregs.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Main Entry Point
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   // First try assigning a free register.
 | |
|   AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     if (!checkPhysRegInterference(VirtReg, PhysReg))
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
 | |
|     return PhysReg;
 | |
| 
 | |
|   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
 | |
| 
 | |
|   // The first time we see a live range, don't try to split or spill.
 | |
|   // Wait until the second time, when all smaller ranges have been allocated.
 | |
|   // This gives a better picture of the interference to split around.
 | |
|   LiveRangeStage Stage = getStage(VirtReg);
 | |
|   if (Stage == RS_First) {
 | |
|     LRStage[VirtReg.reg] = RS_Second;
 | |
|     DEBUG(dbgs() << "wait for second round\n");
 | |
|     NewVRegs.push_back(&VirtReg);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   assert(Stage < RS_Spill && "Cannot allocate after spilling");
 | |
| 
 | |
|   // Try splitting VirtReg or interferences.
 | |
|   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
 | |
|   if (PhysReg || !NewVRegs.empty())
 | |
|     return PhysReg;
 | |
| 
 | |
|   // Finally spill VirtReg itself.
 | |
|   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
 | |
|   LiveRangeEdit LRE(VirtReg, NewVRegs, this);
 | |
|   spiller().spill(LRE);
 | |
|   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "After spilling");
 | |
| 
 | |
|   // The live virtual register requesting allocation was spilled, so tell
 | |
|   // the caller not to allocate anything during this round.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf.getFunction())->getName() << '\n');
 | |
| 
 | |
|   MF = &mf;
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "Before greedy register allocator");
 | |
| 
 | |
|   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   DomTree = &getAnalysis<MachineDominatorTree>();
 | |
|   ReservedRegs = TRI->getReservedRegs(*MF);
 | |
|   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
 | |
|   Loops = &getAnalysis<MachineLoopInfo>();
 | |
|   LoopRanges = &getAnalysis<MachineLoopRanges>();
 | |
|   Bundles = &getAnalysis<EdgeBundles>();
 | |
|   SpillPlacer = &getAnalysis<SpillPlacement>();
 | |
| 
 | |
|   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
 | |
|   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
 | |
|   LRStage.clear();
 | |
|   LRStage.resize(MRI->getNumVirtRegs());
 | |
|   IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
 | |
| 
 | |
|   allocatePhysRegs();
 | |
|   addMBBLiveIns(MF);
 | |
|   LIS->addKillFlags();
 | |
| 
 | |
|   // Run rewriter
 | |
|   {
 | |
|     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
 | |
|     VRM->rewrite(Indexes);
 | |
|   }
 | |
| 
 | |
|   // Write out new DBG_VALUE instructions.
 | |
|   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
 | |
| 
 | |
|   // The pass output is in VirtRegMap. Release all the transient data.
 | |
|   releaseMemory();
 | |
| 
 | |
|   return true;
 | |
| }
 |