mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	About 90% of the relevant blocks are live-through without uses, and the only information required about them is their number. This saves memory and enables later optimizations that need to look at only the use-blocks. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128985 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			954 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			954 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the SplitAnalysis class as well as mutator functions for
 | |
| // live range splitting.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "SplitKit.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFinished, "Number of splits finished");
 | |
| STATISTIC(NumSimple,   "Number of splits that were simple");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                 Split Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
 | |
|                              const LiveIntervals &lis,
 | |
|                              const MachineLoopInfo &mli)
 | |
|   : MF(vrm.getMachineFunction()),
 | |
|     VRM(vrm),
 | |
|     LIS(lis),
 | |
|     Loops(mli),
 | |
|     TII(*MF.getTarget().getInstrInfo()),
 | |
|     CurLI(0),
 | |
|     LastSplitPoint(MF.getNumBlockIDs()) {}
 | |
| 
 | |
| void SplitAnalysis::clear() {
 | |
|   UseSlots.clear();
 | |
|   UseBlocks.clear();
 | |
|   ThroughBlocks.clear();
 | |
|   CurLI = 0;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
 | |
|   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
 | |
|   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
 | |
|   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
 | |
| 
 | |
|   // Compute split points on the first call. The pair is independent of the
 | |
|   // current live interval.
 | |
|   if (!LSP.first.isValid()) {
 | |
|     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
 | |
|     if (FirstTerm == MBB->end())
 | |
|       LSP.first = LIS.getMBBEndIdx(MBB);
 | |
|     else
 | |
|       LSP.first = LIS.getInstructionIndex(FirstTerm);
 | |
| 
 | |
|     // If there is a landing pad successor, also find the call instruction.
 | |
|     if (!LPad)
 | |
|       return LSP.first;
 | |
|     // There may not be a call instruction (?) in which case we ignore LPad.
 | |
|     LSP.second = LSP.first;
 | |
|     for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
 | |
|          I != E; --I)
 | |
|       if (I->getDesc().isCall()) {
 | |
|         LSP.second = LIS.getInstructionIndex(I);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If CurLI is live into a landing pad successor, move the last split point
 | |
|   // back to the call that may throw.
 | |
|   if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
 | |
|     return LSP.second;
 | |
|   else
 | |
|     return LSP.first;
 | |
| }
 | |
| 
 | |
| /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
 | |
| void SplitAnalysis::analyzeUses() {
 | |
|   assert(UseSlots.empty() && "Call clear first");
 | |
| 
 | |
|   // First get all the defs from the interval values. This provides the correct
 | |
|   // slots for early clobbers.
 | |
|   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
 | |
|        E = CurLI->vni_end(); I != E; ++I)
 | |
|     if (!(*I)->isPHIDef() && !(*I)->isUnused())
 | |
|       UseSlots.push_back((*I)->def);
 | |
| 
 | |
|   // Get use slots form the use-def chain.
 | |
|   const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator
 | |
|        I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
 | |
|        ++I)
 | |
|     if (!I.getOperand().isUndef())
 | |
|       UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
 | |
| 
 | |
|   array_pod_sort(UseSlots.begin(), UseSlots.end());
 | |
| 
 | |
|   // Remove duplicates, keeping the smaller slot for each instruction.
 | |
|   // That is what we want for early clobbers.
 | |
|   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
 | |
|                              SlotIndex::isSameInstr),
 | |
|                  UseSlots.end());
 | |
| 
 | |
|   // Compute per-live block info.
 | |
|   if (!calcLiveBlockInfo()) {
 | |
|     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
 | |
|     // I am looking at you, SimpleRegisterCoalescing!
 | |
|     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
 | |
|     const_cast<LiveIntervals&>(LIS)
 | |
|       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
 | |
|     UseBlocks.clear();
 | |
|     ThroughBlocks.clear();
 | |
|     bool fixed = calcLiveBlockInfo();
 | |
|     (void)fixed;
 | |
|     assert(fixed && "Couldn't fix broken live interval");
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Analyze counted "
 | |
|                << UseSlots.size() << " instrs in "
 | |
|                << UseBlocks.size() << " blocks, through "
 | |
|                << ThroughBlocks.size() << " blocks.\n");
 | |
| }
 | |
| 
 | |
| /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
 | |
| /// where CurLI is live.
 | |
| bool SplitAnalysis::calcLiveBlockInfo() {
 | |
|   if (CurLI->empty())
 | |
|     return true;
 | |
| 
 | |
|   LiveInterval::const_iterator LVI = CurLI->begin();
 | |
|   LiveInterval::const_iterator LVE = CurLI->end();
 | |
| 
 | |
|   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
 | |
|   UseI = UseSlots.begin();
 | |
|   UseE = UseSlots.end();
 | |
| 
 | |
|   // Loop over basic blocks where CurLI is live.
 | |
|   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
 | |
|   for (;;) {
 | |
|     BlockInfo BI;
 | |
|     BI.MBB = MFI;
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | |
| 
 | |
|     // LVI is the first live segment overlapping MBB.
 | |
|     BI.LiveIn = LVI->start <= Start;
 | |
|     if (!BI.LiveIn)
 | |
|       BI.Def = LVI->start;
 | |
| 
 | |
|     // Find the first and last uses in the block.
 | |
|     bool Uses = UseI != UseE && *UseI < Stop;
 | |
|     if (Uses) {
 | |
|       BI.FirstUse = *UseI;
 | |
|       assert(BI.FirstUse >= Start);
 | |
|       do ++UseI;
 | |
|       while (UseI != UseE && *UseI < Stop);
 | |
|       BI.LastUse = UseI[-1];
 | |
|       assert(BI.LastUse < Stop);
 | |
|     }
 | |
| 
 | |
|     // Look for gaps in the live range.
 | |
|     bool hasGap = false;
 | |
|     BI.LiveOut = true;
 | |
|     while (LVI->end < Stop) {
 | |
|       SlotIndex LastStop = LVI->end;
 | |
|       if (++LVI == LVE || LVI->start >= Stop) {
 | |
|         BI.Kill = LastStop;
 | |
|         BI.LiveOut = false;
 | |
|         break;
 | |
|       }
 | |
|       if (LastStop < LVI->start) {
 | |
|         hasGap = true;
 | |
|         BI.Kill = LastStop;
 | |
|         BI.Def = LVI->start;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Don't set LiveThrough when the block has a gap.
 | |
|     BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
 | |
|     if (Uses)
 | |
|       UseBlocks.push_back(BI);
 | |
|     else
 | |
|       ThroughBlocks.push_back(BI.MBB->getNumber());
 | |
| 
 | |
|     // FIXME: This should never happen. The live range stops or starts without a
 | |
|     // corresponding use. An earlier pass did something wrong.
 | |
|     if (!BI.LiveThrough && !Uses)
 | |
|       return false;
 | |
| 
 | |
|     // LVI is now at LVE or LVI->end >= Stop.
 | |
|     if (LVI == LVE)
 | |
|       break;
 | |
| 
 | |
|     // Live segment ends exactly at Stop. Move to the next segment.
 | |
|     if (LVI->end == Stop && ++LVI == LVE)
 | |
|       break;
 | |
| 
 | |
|     // Pick the next basic block.
 | |
|     if (LVI->start < Stop)
 | |
|       ++MFI;
 | |
|     else
 | |
|       MFI = LIS.getMBBFromIndex(LVI->start);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
 | |
|   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
 | |
|   const LiveInterval &Orig = LIS.getInterval(OrigReg);
 | |
|   assert(!Orig.empty() && "Splitting empty interval?");
 | |
|   LiveInterval::const_iterator I = Orig.find(Idx);
 | |
| 
 | |
|   // Range containing Idx should begin at Idx.
 | |
|   if (I != Orig.end() && I->start <= Idx)
 | |
|     return I->start == Idx;
 | |
| 
 | |
|   // Range does not contain Idx, previous must end at Idx.
 | |
|   return I != Orig.begin() && (--I)->end == Idx;
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::analyze(const LiveInterval *li) {
 | |
|   clear();
 | |
|   CurLI = li;
 | |
|   analyzeUses();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Split Editor
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | |
| SplitEditor::SplitEditor(SplitAnalysis &sa,
 | |
|                          LiveIntervals &lis,
 | |
|                          VirtRegMap &vrm,
 | |
|                          MachineDominatorTree &mdt)
 | |
|   : SA(sa), LIS(lis), VRM(vrm),
 | |
|     MRI(vrm.getMachineFunction().getRegInfo()),
 | |
|     MDT(mdt),
 | |
|     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
 | |
|     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
 | |
|     Edit(0),
 | |
|     OpenIdx(0),
 | |
|     RegAssign(Allocator)
 | |
| {}
 | |
| 
 | |
| void SplitEditor::reset(LiveRangeEdit &lre) {
 | |
|   Edit = &lre;
 | |
|   OpenIdx = 0;
 | |
|   RegAssign.clear();
 | |
|   Values.clear();
 | |
| 
 | |
|   // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
 | |
|   LiveOutSeen.clear();
 | |
| 
 | |
|   // We don't need an AliasAnalysis since we will only be performing
 | |
|   // cheap-as-a-copy remats anyway.
 | |
|   Edit->anyRematerializable(LIS, TII, 0);
 | |
| }
 | |
| 
 | |
| void SplitEditor::dump() const {
 | |
|   if (RegAssign.empty()) {
 | |
|     dbgs() << " empty\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
 | |
|     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::defValue(unsigned RegIdx,
 | |
|                               const VNInfo *ParentVNI,
 | |
|                               SlotIndex Idx) {
 | |
|   assert(ParentVNI && "Mapping  NULL value");
 | |
|   assert(Idx.isValid() && "Invalid SlotIndex");
 | |
|   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
 | |
|   LiveInterval *LI = Edit->get(RegIdx);
 | |
| 
 | |
|   // Create a new value.
 | |
|   VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
 | |
| 
 | |
|   // Use insert for lookup, so we can add missing values with a second lookup.
 | |
|   std::pair<ValueMap::iterator, bool> InsP =
 | |
|     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
 | |
| 
 | |
|   // This was the first time (RegIdx, ParentVNI) was mapped.
 | |
|   // Keep it as a simple def without any liveness.
 | |
|   if (InsP.second)
 | |
|     return VNI;
 | |
| 
 | |
|   // If the previous value was a simple mapping, add liveness for it now.
 | |
|   if (VNInfo *OldVNI = InsP.first->second) {
 | |
|     SlotIndex Def = OldVNI->def;
 | |
|     LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
 | |
|     // No longer a simple mapping.
 | |
|     InsP.first->second = 0;
 | |
|   }
 | |
| 
 | |
|   // This is a complex mapping, add liveness for VNI
 | |
|   SlotIndex Def = VNI->def;
 | |
|   LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
 | |
| 
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
 | |
|   assert(ParentVNI && "Mapping  NULL value");
 | |
|   VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
 | |
| 
 | |
|   // ParentVNI was either unmapped or already complex mapped. Either way.
 | |
|   if (!VNI)
 | |
|     return;
 | |
| 
 | |
|   // This was previously a single mapping. Make sure the old def is represented
 | |
|   // by a trivial live range.
 | |
|   SlotIndex Def = VNI->def;
 | |
|   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
 | |
|   VNI = 0;
 | |
| }
 | |
| 
 | |
| // extendRange - Extend the live range to reach Idx.
 | |
| // Potentially create phi-def values.
 | |
| void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
 | |
|   assert(Idx.isValid() && "Invalid SlotIndex");
 | |
|   MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
 | |
|   assert(IdxMBB && "No MBB at Idx");
 | |
|   LiveInterval *LI = Edit->get(RegIdx);
 | |
| 
 | |
|   // Is there a def in the same MBB we can extend?
 | |
|   if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
 | |
|     return;
 | |
| 
 | |
|   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
 | |
|   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
 | |
|   // Perform a search for all predecessor blocks where we know the dominating
 | |
|   // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
 | |
| 
 | |
|   // Initialize the live-out cache the first time it is needed.
 | |
|   if (LiveOutSeen.empty()) {
 | |
|     unsigned N = VRM.getMachineFunction().getNumBlockIDs();
 | |
|     LiveOutSeen.resize(N);
 | |
|     LiveOutCache.resize(N);
 | |
|   }
 | |
| 
 | |
|   // Blocks where LI should be live-in.
 | |
|   SmallVector<MachineDomTreeNode*, 16> LiveIn;
 | |
|   LiveIn.push_back(MDT[IdxMBB]);
 | |
| 
 | |
|   // Remember if we have seen more than one value.
 | |
|   bool UniqueVNI = true;
 | |
|   VNInfo *IdxVNI = 0;
 | |
| 
 | |
|   // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
 | |
|   for (unsigned i = 0; i != LiveIn.size(); ++i) {
 | |
|     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | |
|     assert(!MBB->pred_empty() && "Value live-in to entry block?");
 | |
|     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|            PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|        MachineBasicBlock *Pred = *PI;
 | |
|        LiveOutPair &LOP = LiveOutCache[Pred];
 | |
| 
 | |
|        // Is this a known live-out block?
 | |
|        if (LiveOutSeen.test(Pred->getNumber())) {
 | |
|          if (VNInfo *VNI = LOP.first) {
 | |
|            if (IdxVNI && IdxVNI != VNI)
 | |
|              UniqueVNI = false;
 | |
|            IdxVNI = VNI;
 | |
|          }
 | |
|          continue;
 | |
|        }
 | |
| 
 | |
|        // First time. LOP is garbage and must be cleared below.
 | |
|        LiveOutSeen.set(Pred->getNumber());
 | |
| 
 | |
|        // Does Pred provide a live-out value?
 | |
|        SlotIndex Start, Last;
 | |
|        tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
 | |
|        Last = Last.getPrevSlot();
 | |
|        VNInfo *VNI = LI->extendInBlock(Start, Last);
 | |
|        LOP.first = VNI;
 | |
|        if (VNI) {
 | |
|          LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
 | |
|          if (IdxVNI && IdxVNI != VNI)
 | |
|            UniqueVNI = false;
 | |
|          IdxVNI = VNI;
 | |
|          continue;
 | |
|        }
 | |
|        LOP.second = 0;
 | |
| 
 | |
|        // No, we need a live-in value for Pred as well
 | |
|        if (Pred != IdxMBB)
 | |
|          LiveIn.push_back(MDT[Pred]);
 | |
|        else
 | |
|          UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We may need to add phi-def values to preserve the SSA form.
 | |
|   if (UniqueVNI) {
 | |
|     LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
 | |
|     // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
 | |
|     for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
 | |
|       LiveOutCache[LiveIn[i]->getBlock()] = LOP;
 | |
|   } else
 | |
|     IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
 | |
| 
 | |
|   // Since we went through the trouble of a full BFS visiting all reaching defs,
 | |
|   // the values in LiveIn are now accurate. No more phi-defs are needed
 | |
|   // for these blocks, so we can color the live ranges.
 | |
|   for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | |
|     SlotIndex Start = LIS.getMBBStartIdx(MBB);
 | |
|     VNInfo *VNI = LiveOutCache[MBB].first;
 | |
| 
 | |
|     // Anything in LiveIn other than IdxMBB is live-through.
 | |
|     // In IdxMBB, we should stop at Idx unless the same value is live-out.
 | |
|     if (MBB == IdxMBB && IdxVNI != VNI)
 | |
|       LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
 | |
|     else
 | |
|       LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
 | |
|                                SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
 | |
|                                SlotIndex Idx,
 | |
|                                const MachineBasicBlock *IdxMBB) {
 | |
|   // This is essentially the same iterative algorithm that SSAUpdater uses,
 | |
|   // except we already have a dominator tree, so we don't have to recompute it.
 | |
|   LiveInterval *LI = Edit->get(RegIdx);
 | |
|   VNInfo *IdxVNI = 0;
 | |
|   unsigned Changes;
 | |
|   do {
 | |
|     Changes = 0;
 | |
|     // Propagate live-out values down the dominator tree, inserting phi-defs
 | |
|     // when necessary. Since LiveIn was created by a BFS, going backwards makes
 | |
|     // it more likely for us to visit immediate dominators before their
 | |
|     // children.
 | |
|     for (unsigned i = LiveIn.size(); i; --i) {
 | |
|       MachineDomTreeNode *Node = LiveIn[i-1];
 | |
|       MachineBasicBlock *MBB = Node->getBlock();
 | |
|       MachineDomTreeNode *IDom = Node->getIDom();
 | |
|       LiveOutPair IDomValue;
 | |
| 
 | |
|       // We need a live-in value to a block with no immediate dominator?
 | |
|       // This is probably an unreachable block that has survived somehow.
 | |
|       bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
 | |
| 
 | |
|       // IDom dominates all of our predecessors, but it may not be the immediate
 | |
|       // dominator. Check if any of them have live-out values that are properly
 | |
|       // dominated by IDom. If so, we need a phi-def here.
 | |
|       if (!needPHI) {
 | |
|         IDomValue = LiveOutCache[IDom->getBlock()];
 | |
|         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|                PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|           LiveOutPair Value = LiveOutCache[*PI];
 | |
|           if (!Value.first || Value.first == IDomValue.first)
 | |
|             continue;
 | |
|           // This predecessor is carrying something other than IDomValue.
 | |
|           // It could be because IDomValue hasn't propagated yet, or it could be
 | |
|           // because MBB is in the dominance frontier of that value.
 | |
|           if (MDT.dominates(IDom, Value.second)) {
 | |
|             needPHI = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create a phi-def if required.
 | |
|       if (needPHI) {
 | |
|         ++Changes;
 | |
|         SlotIndex Start = LIS.getMBBStartIdx(MBB);
 | |
|         VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
 | |
|         VNI->setIsPHIDef(true);
 | |
|         // We no longer need LI to be live-in.
 | |
|         LiveIn.erase(LiveIn.begin()+(i-1));
 | |
|         // Blocks in LiveIn are either IdxMBB, or have a value live-through.
 | |
|         if (MBB == IdxMBB)
 | |
|           IdxVNI = VNI;
 | |
|         // Check if we need to update live-out info.
 | |
|         LiveOutPair &LOP = LiveOutCache[MBB];
 | |
|         if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) {
 | |
|           // We already have a live-out defined in MBB, so this must be IdxMBB.
 | |
|           assert(MBB == IdxMBB && "Adding phi-def to known live-out");
 | |
|           LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
 | |
|         } else {
 | |
|           // This phi-def is also live-out, so color the whole block.
 | |
|           LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
 | |
|           LOP = LiveOutPair(VNI, Node);
 | |
|         }
 | |
|       } else if (IDomValue.first) {
 | |
|         // No phi-def here. Remember incoming value for IdxMBB.
 | |
|         if (MBB == IdxMBB) {
 | |
|           IdxVNI = IDomValue.first;
 | |
|           // IdxMBB need not be live-out.
 | |
|           if (!LiveOutSeen.test(MBB->getNumber()))
 | |
|             continue;
 | |
|         }
 | |
|         assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block");
 | |
|         // Propagate IDomValue if needed:
 | |
|         // MBB is live-out and doesn't define its own value.
 | |
|         LiveOutPair &LOP = LiveOutCache[MBB];
 | |
|         if (LOP.second != Node && LOP.first != IDomValue.first) {
 | |
|           ++Changes;
 | |
|           LOP = IDomValue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } while (Changes);
 | |
| 
 | |
|   assert(IdxVNI && "Didn't find value for Idx");
 | |
|   return IdxVNI;
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
 | |
|                                    VNInfo *ParentVNI,
 | |
|                                    SlotIndex UseIdx,
 | |
|                                    MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator I) {
 | |
|   MachineInstr *CopyMI = 0;
 | |
|   SlotIndex Def;
 | |
|   LiveInterval *LI = Edit->get(RegIdx);
 | |
| 
 | |
|   // Attempt cheap-as-a-copy rematerialization.
 | |
|   LiveRangeEdit::Remat RM(ParentVNI);
 | |
|   if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
 | |
|     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
 | |
|   } else {
 | |
|     // Can't remat, just insert a copy from parent.
 | |
|     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
 | |
|                .addReg(Edit->getReg());
 | |
|     Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
 | |
|   }
 | |
| 
 | |
|   // Define the value in Reg.
 | |
|   VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
 | |
|   VNI->setCopy(CopyMI);
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| /// Create a new virtual register and live interval.
 | |
| void SplitEditor::openIntv() {
 | |
|   assert(!OpenIdx && "Previous LI not closed before openIntv");
 | |
| 
 | |
|   // Create the complement as index 0.
 | |
|   if (Edit->empty())
 | |
|     Edit->create(LIS, VRM);
 | |
| 
 | |
|   // Create the open interval.
 | |
|   OpenIdx = Edit->size();
 | |
|   Edit->create(LIS, VRM);
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before enterIntvBefore");
 | |
|   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | |
|   Idx = Idx.getBaseIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx;
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "enterIntvBefore called with invalid index");
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | |
|   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
 | |
|   SlotIndex End = LIS.getMBBEndIdx(&MBB);
 | |
|   SlotIndex Last = End.getPrevSlot();
 | |
|   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return End;
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | |
|   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
 | |
|                               LIS.getLastSplitPoint(Edit->getParent(), &MBB));
 | |
|   RegAssign.insert(VNI->def, End, OpenIdx);
 | |
|   DEBUG(dump());
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| /// useIntv - indicate that all instructions in MBB should use OpenLI.
 | |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | |
|   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
 | |
| }
 | |
| 
 | |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | |
|   assert(OpenIdx && "openIntv not called before useIntv");
 | |
|   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
 | |
|   RegAssign.insert(Start, End, OpenIdx);
 | |
|   DEBUG(dump());
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
 | |
|   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | |
| 
 | |
|   // The interval must be live beyond the instruction at Idx.
 | |
|   Idx = Idx.getBoundaryIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx.getNextSlot();
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
| 
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "No instruction at index");
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
 | |
|                               llvm::next(MachineBasicBlock::iterator(MI)));
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
 | |
|   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
 | |
| 
 | |
|   // The interval must be live into the instruction at Idx.
 | |
|   Idx = Idx.getBoundaryIndex();
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return Idx.getNextSlot();
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | |
| 
 | |
|   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "No instruction at index");
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | |
|   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
 | |
|   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
 | |
|   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
 | |
| 
 | |
|   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return Start;
 | |
|   }
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
 | |
|                               MBB.SkipPHIsAndLabels(MBB.begin()));
 | |
|   RegAssign.insert(Start, VNI->def, OpenIdx);
 | |
|   DEBUG(dump());
 | |
|   return VNI->def;
 | |
| }
 | |
| 
 | |
| void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
 | |
|   assert(OpenIdx && "openIntv not called before overlapIntv");
 | |
|   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | |
|   assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
 | |
|          "Parent changes value in extended range");
 | |
|   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
 | |
|          "Range cannot span basic blocks");
 | |
| 
 | |
|   // The complement interval will be extended as needed by extendRange().
 | |
|   if (ParentVNI)
 | |
|     markComplexMapped(0, ParentVNI);
 | |
|   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
 | |
|   RegAssign.insert(Start, End, OpenIdx);
 | |
|   DEBUG(dump());
 | |
| }
 | |
| 
 | |
| /// closeIntv - Indicate that we are done editing the currently open
 | |
| /// LiveInterval, and ranges can be trimmed.
 | |
| void SplitEditor::closeIntv() {
 | |
|   assert(OpenIdx && "openIntv not called before closeIntv");
 | |
|   OpenIdx = 0;
 | |
| }
 | |
| 
 | |
| /// transferSimpleValues - Transfer all simply defined values to the new live
 | |
| /// ranges.
 | |
| /// Values that were rematerialized or that have multiple defs are left alone.
 | |
| bool SplitEditor::transferSimpleValues() {
 | |
|   bool Skipped = false;
 | |
|   RegAssignMap::const_iterator AssignI = RegAssign.begin();
 | |
|   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
 | |
|          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
 | |
|     DEBUG(dbgs() << "  blit " << *ParentI << ':');
 | |
|     VNInfo *ParentVNI = ParentI->valno;
 | |
|     // RegAssign has holes where RegIdx 0 should be used.
 | |
|     SlotIndex Start = ParentI->start;
 | |
|     AssignI.advanceTo(Start);
 | |
|     do {
 | |
|       unsigned RegIdx;
 | |
|       SlotIndex End = ParentI->end;
 | |
|       if (!AssignI.valid()) {
 | |
|         RegIdx = 0;
 | |
|       } else if (AssignI.start() <= Start) {
 | |
|         RegIdx = AssignI.value();
 | |
|         if (AssignI.stop() < End) {
 | |
|           End = AssignI.stop();
 | |
|           ++AssignI;
 | |
|         }
 | |
|       } else {
 | |
|         RegIdx = 0;
 | |
|         End = std::min(End, AssignI.start());
 | |
|       }
 | |
|       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
 | |
|       if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
 | |
|         DEBUG(dbgs() << ':' << VNI->id);
 | |
|         Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
 | |
|       } else
 | |
|         Skipped = true;
 | |
|       Start = End;
 | |
|     } while (Start != ParentI->end);
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   return Skipped;
 | |
| }
 | |
| 
 | |
| void SplitEditor::extendPHIKillRanges() {
 | |
|     // Extend live ranges to be live-out for successor PHI values.
 | |
|   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
 | |
|        E = Edit->getParent().vni_end(); I != E; ++I) {
 | |
|     const VNInfo *PHIVNI = *I;
 | |
|     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
 | |
|       continue;
 | |
|     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
 | |
|     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
 | |
|     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|          PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|       SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
 | |
|       // The predecessor may not have a live-out value. That is OK, like an
 | |
|       // undef PHI operand.
 | |
|       if (Edit->getParent().liveAt(End)) {
 | |
|         assert(RegAssign.lookup(End) == RegIdx &&
 | |
|                "Different register assignment in phi predecessor");
 | |
|         extendRange(RegIdx, End);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// rewriteAssigned - Rewrite all uses of Edit->getReg().
 | |
| void SplitEditor::rewriteAssigned(bool ExtendRanges) {
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
 | |
|        RE = MRI.reg_end(); RI != RE;) {
 | |
|     MachineOperand &MO = RI.getOperand();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     ++RI;
 | |
|     // LiveDebugVariables should have handled all DBG_VALUE instructions.
 | |
|     if (MI->isDebugValue()) {
 | |
|       DEBUG(dbgs() << "Zapping " << *MI);
 | |
|       MO.setReg(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // <undef> operands don't really read the register, so just assign them to
 | |
|     // the complement.
 | |
|     if (MO.isUse() && MO.isUndef()) {
 | |
|       MO.setReg(Edit->get(0)->reg);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SlotIndex Idx = LIS.getInstructionIndex(MI);
 | |
|     if (MO.isDef())
 | |
|       Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
 | |
| 
 | |
|     // Rewrite to the mapped register at Idx.
 | |
|     unsigned RegIdx = RegAssign.lookup(Idx);
 | |
|     MO.setReg(Edit->get(RegIdx)->reg);
 | |
|     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
 | |
|                  << Idx << ':' << RegIdx << '\t' << *MI);
 | |
| 
 | |
|     // Extend liveness to Idx if the instruction reads reg.
 | |
|     if (!ExtendRanges)
 | |
|       continue;
 | |
| 
 | |
|     // Skip instructions that don't read Reg.
 | |
|     if (MO.isDef()) {
 | |
|       if (!MO.getSubReg() && !MO.isEarlyClobber())
 | |
|         continue;
 | |
|       // We may wan't to extend a live range for a partial redef, or for a use
 | |
|       // tied to an early clobber.
 | |
|       Idx = Idx.getPrevSlot();
 | |
|       if (!Edit->getParent().liveAt(Idx))
 | |
|         continue;
 | |
|     } else
 | |
|       Idx = Idx.getUseIndex();
 | |
| 
 | |
|     extendRange(RegIdx, Idx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitEditor::deleteRematVictims() {
 | |
|   SmallVector<MachineInstr*, 8> Dead;
 | |
|   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
 | |
|     LiveInterval *LI = *I;
 | |
|     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
 | |
|            LII != LIE; ++LII) {
 | |
|       // Dead defs end at the store slot.
 | |
|       if (LII->end != LII->valno->def.getNextSlot())
 | |
|         continue;
 | |
|       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
 | |
|       assert(MI && "Missing instruction for dead def");
 | |
|       MI->addRegisterDead(LI->reg, &TRI);
 | |
| 
 | |
|       if (!MI->allDefsAreDead())
 | |
|         continue;
 | |
| 
 | |
|       DEBUG(dbgs() << "All defs dead: " << *MI);
 | |
|       Dead.push_back(MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dead.empty())
 | |
|     return;
 | |
| 
 | |
|   Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
 | |
| }
 | |
| 
 | |
| void SplitEditor::finish() {
 | |
|   assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
 | |
|   ++NumFinished;
 | |
| 
 | |
|   // At this point, the live intervals in Edit contain VNInfos corresponding to
 | |
|   // the inserted copies.
 | |
| 
 | |
|   // Add the original defs from the parent interval.
 | |
|   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
 | |
|          E = Edit->getParent().vni_end(); I != E; ++I) {
 | |
|     const VNInfo *ParentVNI = *I;
 | |
|     if (ParentVNI->isUnused())
 | |
|       continue;
 | |
|     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
 | |
|     VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
 | |
|     VNI->setIsPHIDef(ParentVNI->isPHIDef());
 | |
|     VNI->setCopy(ParentVNI->getCopy());
 | |
| 
 | |
|     // Mark rematted values as complex everywhere to force liveness computation.
 | |
|     // The new live ranges may be truncated.
 | |
|     if (Edit->didRematerialize(ParentVNI))
 | |
|       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
 | |
|         markComplexMapped(i, ParentVNI);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Every new interval must have a def by now, otherwise the split is bogus.
 | |
|   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
 | |
|     assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
 | |
| #endif
 | |
| 
 | |
|   // Transfer the simply mapped values, check if any are complex.
 | |
|   bool Complex = transferSimpleValues();
 | |
|   if (Complex)
 | |
|     extendPHIKillRanges();
 | |
|   else
 | |
|     ++NumSimple;
 | |
| 
 | |
|   // Rewrite virtual registers, possibly extending ranges.
 | |
|   rewriteAssigned(Complex);
 | |
| 
 | |
|   // Delete defs that were rematted everywhere.
 | |
|   if (Complex)
 | |
|     deleteRematVictims();
 | |
| 
 | |
|   // Get rid of unused values and set phi-kill flags.
 | |
|   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
 | |
|     (*I)->RenumberValues(LIS);
 | |
| 
 | |
|   // Now check if any registers were separated into multiple components.
 | |
|   ConnectedVNInfoEqClasses ConEQ(LIS);
 | |
|   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
 | |
|     // Don't use iterators, they are invalidated by create() below.
 | |
|     LiveInterval *li = Edit->get(i);
 | |
|     unsigned NumComp = ConEQ.Classify(li);
 | |
|     if (NumComp <= 1)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
 | |
|     SmallVector<LiveInterval*, 8> dups;
 | |
|     dups.push_back(li);
 | |
|     for (unsigned i = 1; i != NumComp; ++i)
 | |
|       dups.push_back(&Edit->create(LIS, VRM));
 | |
|     ConEQ.Distribute(&dups[0], MRI);
 | |
|   }
 | |
| 
 | |
|   // Calculate spill weight and allocation hints for new intervals.
 | |
|   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Single Block Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
 | |
| /// may be an advantage to split CurLI for the duration of the block.
 | |
| bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
 | |
|   // If CurLI is local to one block, there is no point to splitting it.
 | |
|   if (UseBlocks.size() <= 1)
 | |
|     return false;
 | |
|   // Add blocks with multiple uses.
 | |
|   for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
 | |
|     const BlockInfo &BI = UseBlocks[i];
 | |
|     if (BI.FirstUse == BI.LastUse)
 | |
|       continue;
 | |
|     Blocks.insert(BI.MBB);
 | |
|   }
 | |
|   return !Blocks.empty();
 | |
| }
 | |
| 
 | |
| /// splitSingleBlocks - Split CurLI into a separate live interval inside each
 | |
| /// basic block in Blocks.
 | |
| void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
 | |
|   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     if (!Blocks.count(BI.MBB))
 | |
|       continue;
 | |
| 
 | |
|     openIntv();
 | |
|     SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
 | |
|     SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
 | |
|                                                   LastSplitPoint));
 | |
|     if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
 | |
|       useIntv(SegStart, leaveIntvAfter(BI.LastUse));
 | |
|     } else {
 | |
|       // The last use is after the last valid split point.
 | |
|       SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
 | |
|       useIntv(SegStart, SegStop);
 | |
|       overlapIntv(SegStop, BI.LastUse);
 | |
|     }
 | |
|     closeIntv();
 | |
|   }
 | |
|   finish();
 | |
| }
 |