mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120298 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			640 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			640 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TargetData.cpp - Data size & alignment routines --------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines target properties related to datatype size/offset/alignment
 | |
| // information.
 | |
| //
 | |
| // This structure should be created once, filled in if the defaults are not
 | |
| // correct and then passed around by const&.  None of the members functions
 | |
| // require modification to the object.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include <algorithm>
 | |
| #include <cstdlib>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Handle the Pass registration stuff necessary to use TargetData's.
 | |
| 
 | |
| // Register the default SparcV9 implementation...
 | |
| INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true)
 | |
| char TargetData::ID = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Support for StructLayout
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
 | |
|   StructAlignment = 0;
 | |
|   StructSize = 0;
 | |
|   NumElements = ST->getNumElements();
 | |
| 
 | |
|   // Loop over each of the elements, placing them in memory.
 | |
|   for (unsigned i = 0, e = NumElements; i != e; ++i) {
 | |
|     const Type *Ty = ST->getElementType(i);
 | |
|     unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
 | |
| 
 | |
|     // Add padding if necessary to align the data element properly.
 | |
|     if ((StructSize & (TyAlign-1)) != 0)
 | |
|       StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
 | |
| 
 | |
|     // Keep track of maximum alignment constraint.
 | |
|     StructAlignment = std::max(TyAlign, StructAlignment);
 | |
| 
 | |
|     MemberOffsets[i] = StructSize;
 | |
|     StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
 | |
|   }
 | |
| 
 | |
|   // Empty structures have alignment of 1 byte.
 | |
|   if (StructAlignment == 0) StructAlignment = 1;
 | |
| 
 | |
|   // Add padding to the end of the struct so that it could be put in an array
 | |
|   // and all array elements would be aligned correctly.
 | |
|   if ((StructSize & (StructAlignment-1)) != 0)
 | |
|     StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getElementContainingOffset - Given a valid offset into the structure,
 | |
| /// return the structure index that contains it.
 | |
| unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
 | |
|   const uint64_t *SI =
 | |
|     std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
 | |
|   assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
 | |
|   --SI;
 | |
|   assert(*SI <= Offset && "upper_bound didn't work");
 | |
|   assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
 | |
|          (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
 | |
|          "Upper bound didn't work!");
 | |
| 
 | |
|   // Multiple fields can have the same offset if any of them are zero sized.
 | |
|   // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
 | |
|   // at the i32 element, because it is the last element at that offset.  This is
 | |
|   // the right one to return, because anything after it will have a higher
 | |
|   // offset, implying that this element is non-empty.
 | |
|   return SI-&MemberOffsets[0];
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TargetAlignElem, TargetAlign support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetAlignElem
 | |
| TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                      unsigned pref_align, uint32_t bit_width) {
 | |
|   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
 | |
|   TargetAlignElem retval;
 | |
|   retval.AlignType = align_type;
 | |
|   retval.ABIAlign = abi_align;
 | |
|   retval.PrefAlign = pref_align;
 | |
|   retval.TypeBitWidth = bit_width;
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| bool
 | |
| TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
 | |
|   return (AlignType == rhs.AlignType
 | |
|           && ABIAlign == rhs.ABIAlign
 | |
|           && PrefAlign == rhs.PrefAlign
 | |
|           && TypeBitWidth == rhs.TypeBitWidth);
 | |
| }
 | |
| 
 | |
| const TargetAlignElem TargetData::InvalidAlignmentElem =
 | |
|                 TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       TargetData Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getInt - Get an integer ignoring errors.
 | |
| static unsigned getInt(StringRef R) {
 | |
|   unsigned Result = 0;
 | |
|   R.getAsInteger(10, Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void TargetData::init(StringRef Desc) {
 | |
|   initializeTargetDataPass(*PassRegistry::getPassRegistry());
 | |
|   
 | |
|   LayoutMap = 0;
 | |
|   LittleEndian = false;
 | |
|   PointerMemSize = 8;
 | |
|   PointerABIAlign = 8;
 | |
|   PointerPrefAlign = PointerABIAlign;
 | |
| 
 | |
|   // Default alignments
 | |
|   setAlignment(INTEGER_ALIGN,   1,  1, 1);   // i1
 | |
|   setAlignment(INTEGER_ALIGN,   1,  1, 8);   // i8
 | |
|   setAlignment(INTEGER_ALIGN,   2,  2, 16);  // i16
 | |
|   setAlignment(INTEGER_ALIGN,   4,  4, 32);  // i32
 | |
|   setAlignment(INTEGER_ALIGN,   4,  8, 64);  // i64
 | |
|   setAlignment(FLOAT_ALIGN,     4,  4, 32);  // float
 | |
|   setAlignment(FLOAT_ALIGN,     8,  8, 64);  // double
 | |
|   setAlignment(VECTOR_ALIGN,    8,  8, 64);  // v2i32, v1i64, ...
 | |
|   setAlignment(VECTOR_ALIGN,   16, 16, 128); // v16i8, v8i16, v4i32, ...
 | |
|   setAlignment(AGGREGATE_ALIGN, 0,  8,  0);  // struct
 | |
| 
 | |
|   while (!Desc.empty()) {
 | |
|     std::pair<StringRef, StringRef> Split = Desc.split('-');
 | |
|     StringRef Token = Split.first;
 | |
|     Desc = Split.second;
 | |
| 
 | |
|     if (Token.empty())
 | |
|       continue;
 | |
| 
 | |
|     Split = Token.split(':');
 | |
|     StringRef Specifier = Split.first;
 | |
|     Token = Split.second;
 | |
| 
 | |
|     assert(!Specifier.empty() && "Can't be empty here");
 | |
| 
 | |
|     switch (Specifier[0]) {
 | |
|     case 'E':
 | |
|       LittleEndian = false;
 | |
|       break;
 | |
|     case 'e':
 | |
|       LittleEndian = true;
 | |
|       break;
 | |
|     case 'p':
 | |
|       Split = Token.split(':');
 | |
|       PointerMemSize = getInt(Split.first) / 8;
 | |
|       Split = Split.second.split(':');
 | |
|       PointerABIAlign = getInt(Split.first) / 8;
 | |
|       Split = Split.second.split(':');
 | |
|       PointerPrefAlign = getInt(Split.first) / 8;
 | |
|       if (PointerPrefAlign == 0)
 | |
|         PointerPrefAlign = PointerABIAlign;
 | |
|       break;
 | |
|     case 'i':
 | |
|     case 'v':
 | |
|     case 'f':
 | |
|     case 'a':
 | |
|     case 's': {
 | |
|       AlignTypeEnum AlignType;
 | |
|       switch (Specifier[0]) {
 | |
|       default:
 | |
|       case 'i': AlignType = INTEGER_ALIGN; break;
 | |
|       case 'v': AlignType = VECTOR_ALIGN; break;
 | |
|       case 'f': AlignType = FLOAT_ALIGN; break;
 | |
|       case 'a': AlignType = AGGREGATE_ALIGN; break;
 | |
|       case 's': AlignType = STACK_ALIGN; break;
 | |
|       }
 | |
|       unsigned Size = getInt(Specifier.substr(1));
 | |
|       Split = Token.split(':');
 | |
|       unsigned ABIAlign = getInt(Split.first) / 8;
 | |
| 
 | |
|       Split = Split.second.split(':');
 | |
|       unsigned PrefAlign = getInt(Split.first) / 8;
 | |
|       if (PrefAlign == 0)
 | |
|         PrefAlign = ABIAlign;
 | |
|       setAlignment(AlignType, ABIAlign, PrefAlign, Size);
 | |
|       break;
 | |
|     }
 | |
|     case 'n':  // Native integer types.
 | |
|       Specifier = Specifier.substr(1);
 | |
|       do {
 | |
|         if (unsigned Width = getInt(Specifier))
 | |
|           LegalIntWidths.push_back(Width);
 | |
|         Split = Token.split(':');
 | |
|         Specifier = Split.first;
 | |
|         Token = Split.second;
 | |
|       } while (!Specifier.empty() || !Token.empty());
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Default ctor.
 | |
| ///
 | |
| /// @note This has to exist, because this is a pass, but it should never be
 | |
| /// used.
 | |
| TargetData::TargetData() : ImmutablePass(ID) {
 | |
|   report_fatal_error("Bad TargetData ctor used.  "
 | |
|                     "Tool did not specify a TargetData to use?");
 | |
| }
 | |
| 
 | |
| TargetData::TargetData(const Module *M)
 | |
|   : ImmutablePass(ID) {
 | |
|   init(M->getDataLayout());
 | |
| }
 | |
| 
 | |
| void
 | |
| TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                          unsigned pref_align, uint32_t bit_width) {
 | |
|   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
 | |
|   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
 | |
|     if (Alignments[i].AlignType == align_type &&
 | |
|         Alignments[i].TypeBitWidth == bit_width) {
 | |
|       // Update the abi, preferred alignments.
 | |
|       Alignments[i].ABIAlign = abi_align;
 | |
|       Alignments[i].PrefAlign = pref_align;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
 | |
|                                             pref_align, bit_width));
 | |
| }
 | |
| 
 | |
| /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
 | |
| /// preferred if ABIInfo = false) the target wants for the specified datatype.
 | |
| unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
 | |
|                                       uint32_t BitWidth, bool ABIInfo,
 | |
|                                       const Type *Ty) const {
 | |
|   // Check to see if we have an exact match and remember the best match we see.
 | |
|   int BestMatchIdx = -1;
 | |
|   int LargestInt = -1;
 | |
|   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
 | |
|     if (Alignments[i].AlignType == AlignType &&
 | |
|         Alignments[i].TypeBitWidth == BitWidth)
 | |
|       return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
 | |
| 
 | |
|     // The best match so far depends on what we're looking for.
 | |
|      if (AlignType == INTEGER_ALIGN &&
 | |
|          Alignments[i].AlignType == INTEGER_ALIGN) {
 | |
|       // The "best match" for integers is the smallest size that is larger than
 | |
|       // the BitWidth requested.
 | |
|       if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
 | |
|            Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
 | |
|         BestMatchIdx = i;
 | |
|       // However, if there isn't one that's larger, then we must use the
 | |
|       // largest one we have (see below)
 | |
|       if (LargestInt == -1 ||
 | |
|           Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
 | |
|         LargestInt = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we didn't find an exact solution.  Fall back here depending on what
 | |
|   // is being looked for.
 | |
|   if (BestMatchIdx == -1) {
 | |
|     // If we didn't find an integer alignment, fall back on most conservative.
 | |
|     if (AlignType == INTEGER_ALIGN) {
 | |
|       BestMatchIdx = LargestInt;
 | |
|     } else {
 | |
|       assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
 | |
| 
 | |
|       // By default, use natural alignment for vector types. This is consistent
 | |
|       // with what clang and llvm-gcc do.
 | |
|       unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
 | |
|       Align *= cast<VectorType>(Ty)->getNumElements();
 | |
|       // If the alignment is not a power of 2, round up to the next power of 2.
 | |
|       // This happens for non-power-of-2 length vectors.
 | |
|       if (Align & (Align-1))
 | |
|         Align = llvm::NextPowerOf2(Align);
 | |
|       return Align;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Since we got a "best match" index, just return it.
 | |
|   return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
 | |
|                  : Alignments[BestMatchIdx].PrefAlign;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class StructLayoutMap : public AbstractTypeUser {
 | |
|   typedef DenseMap<const StructType*, StructLayout*> LayoutInfoTy;
 | |
|   LayoutInfoTy LayoutInfo;
 | |
| 
 | |
|   void RemoveEntry(LayoutInfoTy::iterator I, bool WasAbstract) {
 | |
|     I->second->~StructLayout();
 | |
|     free(I->second);
 | |
|     if (WasAbstract)
 | |
|       I->first->removeAbstractTypeUser(this);
 | |
|     LayoutInfo.erase(I);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// refineAbstractType - The callback method invoked when an abstract type is
 | |
|   /// resolved to another type.  An object must override this method to update
 | |
|   /// its internal state to reference NewType instead of OldType.
 | |
|   ///
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy,
 | |
|                                   const Type *) {
 | |
|     LayoutInfoTy::iterator I = LayoutInfo.find(cast<const StructType>(OldTy));
 | |
|     assert(I != LayoutInfo.end() && "Using type but not in map?");
 | |
|     RemoveEntry(I, true);
 | |
|   }
 | |
| 
 | |
|   /// typeBecameConcrete - The other case which AbstractTypeUsers must be aware
 | |
|   /// of is when a type makes the transition from being abstract (where it has
 | |
|   /// clients on its AbstractTypeUsers list) to concrete (where it does not).
 | |
|   /// This method notifies ATU's when this occurs for a type.
 | |
|   ///
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|     LayoutInfoTy::iterator I = LayoutInfo.find(cast<const StructType>(AbsTy));
 | |
|     assert(I != LayoutInfo.end() && "Using type but not in map?");
 | |
|     RemoveEntry(I, true);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   virtual ~StructLayoutMap() {
 | |
|     // Remove any layouts.
 | |
|     for (LayoutInfoTy::iterator
 | |
|            I = LayoutInfo.begin(), E = LayoutInfo.end(); I != E; ++I) {
 | |
|       const Type *Key = I->first;
 | |
|       StructLayout *Value = I->second;
 | |
| 
 | |
|       if (Key->isAbstract())
 | |
|         Key->removeAbstractTypeUser(this);
 | |
| 
 | |
|       Value->~StructLayout();
 | |
|       free(Value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void InvalidateEntry(const StructType *Ty) {
 | |
|     LayoutInfoTy::iterator I = LayoutInfo.find(Ty);
 | |
|     if (I == LayoutInfo.end()) return;
 | |
|     RemoveEntry(I, Ty->isAbstract());
 | |
|   }
 | |
| 
 | |
|   StructLayout *&operator[](const StructType *STy) {
 | |
|     return LayoutInfo[STy];
 | |
|   }
 | |
| 
 | |
|   // for debugging...
 | |
|   virtual void dump() const {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| TargetData::~TargetData() {
 | |
|   delete static_cast<StructLayoutMap*>(LayoutMap);
 | |
| }
 | |
| 
 | |
| const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
 | |
|   if (!LayoutMap)
 | |
|     LayoutMap = new StructLayoutMap();
 | |
| 
 | |
|   StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
 | |
|   StructLayout *&SL = (*STM)[Ty];
 | |
|   if (SL) return SL;
 | |
| 
 | |
|   // Otherwise, create the struct layout.  Because it is variable length, we
 | |
|   // malloc it, then use placement new.
 | |
|   int NumElts = Ty->getNumElements();
 | |
|   StructLayout *L =
 | |
|     (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
 | |
| 
 | |
|   // Set SL before calling StructLayout's ctor.  The ctor could cause other
 | |
|   // entries to be added to TheMap, invalidating our reference.
 | |
|   SL = L;
 | |
| 
 | |
|   new (L) StructLayout(Ty, *this);
 | |
| 
 | |
|   if (Ty->isAbstract())
 | |
|     Ty->addAbstractTypeUser(STM);
 | |
| 
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
 | |
| /// objects.  If a TargetData object is alive when types are being refined and
 | |
| /// removed, this method must be called whenever a StructType is removed to
 | |
| /// avoid a dangling pointer in this cache.
 | |
| void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
 | |
|   if (!LayoutMap) return;  // No cache.
 | |
| 
 | |
|   static_cast<StructLayoutMap*>(LayoutMap)->InvalidateEntry(Ty);
 | |
| }
 | |
| 
 | |
| std::string TargetData::getStringRepresentation() const {
 | |
|   std::string Result;
 | |
|   raw_string_ostream OS(Result);
 | |
| 
 | |
|   OS << (LittleEndian ? "e" : "E")
 | |
|      << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8
 | |
|      << ':' << PointerPrefAlign*8;
 | |
|   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
 | |
|     const TargetAlignElem &AI = Alignments[i];
 | |
|     OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
 | |
|        << AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
 | |
|   }
 | |
| 
 | |
|   if (!LegalIntWidths.empty()) {
 | |
|     OS << "-n" << (unsigned)LegalIntWidths[0];
 | |
| 
 | |
|     for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
 | |
|       OS << ':' << (unsigned)LegalIntWidths[i];
 | |
|   }
 | |
|   return OS.str();
 | |
| }
 | |
| 
 | |
| 
 | |
| uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
 | |
|   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::LabelTyID:
 | |
|   case Type::PointerTyID:
 | |
|     return getPointerSizeInBits();
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
 | |
|   }
 | |
|   case Type::StructTyID:
 | |
|     // Get the layout annotation... which is lazily created on demand.
 | |
|     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
 | |
|   case Type::IntegerTyID:
 | |
|     return cast<IntegerType>(Ty)->getBitWidth();
 | |
|   case Type::VoidTyID:
 | |
|     return 8;
 | |
|   case Type::FloatTyID:
 | |
|     return 32;
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::X86_MMXTyID:
 | |
|     return 64;
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:
 | |
|     return 128;
 | |
|   // In memory objects this is always aligned to a higher boundary, but
 | |
|   // only 80 bits contain information.
 | |
|   case Type::X86_FP80TyID:
 | |
|     return 80;
 | |
|   case Type::VectorTyID:
 | |
|     return cast<VectorType>(Ty)->getBitWidth();
 | |
|   default:
 | |
|     llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|   \param abi_or_pref Flag that determines which alignment is returned. true
 | |
|   returns the ABI alignment, false returns the preferred alignment.
 | |
|   \param Ty The underlying type for which alignment is determined.
 | |
| 
 | |
|   Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
 | |
|   == false) for the requested type \a Ty.
 | |
|  */
 | |
| unsigned TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
 | |
|   int AlignType = -1;
 | |
| 
 | |
|   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   // Early escape for the non-numeric types.
 | |
|   case Type::LabelTyID:
 | |
|   case Type::PointerTyID:
 | |
|     return (abi_or_pref
 | |
|             ? getPointerABIAlignment()
 | |
|             : getPointerPrefAlignment());
 | |
|   case Type::ArrayTyID:
 | |
|     return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     // Packed structure types always have an ABI alignment of one.
 | |
|     if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
 | |
|       return 1;
 | |
| 
 | |
|     // Get the layout annotation... which is lazily created on demand.
 | |
|     const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
 | |
|     unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
 | |
|     return std::max(Align, Layout->getAlignment());
 | |
|   }
 | |
|   case Type::IntegerTyID:
 | |
|   case Type::VoidTyID:
 | |
|     AlignType = INTEGER_ALIGN;
 | |
|     break;
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|   // PPC_FP128TyID and FP128TyID have different data contents, but the
 | |
|   // same size and alignment, so they look the same here.
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::X86_FP80TyID:
 | |
|     AlignType = FLOAT_ALIGN;
 | |
|     break;
 | |
|   case Type::X86_MMXTyID:
 | |
|   case Type::VectorTyID:
 | |
|     AlignType = VECTOR_ALIGN;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Bad type for getAlignment!!!");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
 | |
|                           abi_or_pref, Ty);
 | |
| }
 | |
| 
 | |
| unsigned TargetData::getABITypeAlignment(const Type *Ty) const {
 | |
|   return getAlignment(Ty, true);
 | |
| }
 | |
| 
 | |
| /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
 | |
| /// an integer type of the specified bitwidth.
 | |
| unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const {
 | |
|   return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
 | |
|   for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
 | |
|     if (Alignments[i].AlignType == STACK_ALIGN)
 | |
|       return Alignments[i].ABIAlign;
 | |
| 
 | |
|   return getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| unsigned TargetData::getPrefTypeAlignment(const Type *Ty) const {
 | |
|   return getAlignment(Ty, false);
 | |
| }
 | |
| 
 | |
| unsigned TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
 | |
|   unsigned Align = getPrefTypeAlignment(Ty);
 | |
|   assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
 | |
|   return Log2_32(Align);
 | |
| }
 | |
| 
 | |
| /// getIntPtrType - Return an unsigned integer type that is the same size or
 | |
| /// greater to the host pointer size.
 | |
| const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
 | |
|   return IntegerType::get(C, getPointerSizeInBits());
 | |
| }
 | |
| 
 | |
| 
 | |
| uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
 | |
|                                       unsigned NumIndices) const {
 | |
|   const Type *Ty = ptrTy;
 | |
|   assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
 | |
|   uint64_t Result = 0;
 | |
| 
 | |
|   generic_gep_type_iterator<Value* const*>
 | |
|     TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
 | |
|   for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*TI)) {
 | |
|       assert(Indices[CurIDX]->getType() ==
 | |
|              Type::getInt32Ty(ptrTy->getContext()) &&
 | |
|              "Illegal struct idx");
 | |
|       unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
 | |
| 
 | |
|       // Get structure layout information...
 | |
|       const StructLayout *Layout = getStructLayout(STy);
 | |
| 
 | |
|       // Add in the offset, as calculated by the structure layout info...
 | |
|       Result += Layout->getElementOffset(FieldNo);
 | |
| 
 | |
|       // Update Ty to refer to current element
 | |
|       Ty = STy->getElementType(FieldNo);
 | |
|     } else {
 | |
|       // Update Ty to refer to current element
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // Get the array index and the size of each array element.
 | |
|       if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
 | |
|         Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getPreferredAlignment - Return the preferred alignment of the specified
 | |
| /// global.  This includes an explicitly requested alignment (if the global
 | |
| /// has one).
 | |
| unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
 | |
|   const Type *ElemType = GV->getType()->getElementType();
 | |
|   unsigned Alignment = getPrefTypeAlignment(ElemType);
 | |
|   if (GV->getAlignment() > Alignment)
 | |
|     Alignment = GV->getAlignment();
 | |
| 
 | |
|   if (GV->hasInitializer()) {
 | |
|     if (Alignment < 16) {
 | |
|       // If the global is not external, see if it is large.  If so, give it a
 | |
|       // larger alignment.
 | |
|       if (getTypeSizeInBits(ElemType) > 128)
 | |
|         Alignment = 16;    // 16-byte alignment.
 | |
|     }
 | |
|   }
 | |
|   return Alignment;
 | |
| }
 | |
| 
 | |
| /// getPreferredAlignmentLog - Return the preferred alignment of the
 | |
| /// specified global, returned in log form.  This includes an explicitly
 | |
| /// requested alignment (if the global has one).
 | |
| unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
 | |
|   return Log2_32(getPreferredAlignment(GV));
 | |
| }
 |