mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107942 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			949 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			949 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the X86MCCodeEmitter class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-emitter"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86FixupKinds.h"
 | 
						|
#include "llvm/MC/MCCodeEmitter.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86MCCodeEmitter : public MCCodeEmitter {
 | 
						|
  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | 
						|
  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | 
						|
  const TargetMachine &TM;
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
  MCContext &Ctx;
 | 
						|
  bool Is64BitMode;
 | 
						|
public:
 | 
						|
  X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
 | 
						|
    : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
 | 
						|
    Is64BitMode = is64Bit;
 | 
						|
  }
 | 
						|
 | 
						|
  ~X86MCCodeEmitter() {}
 | 
						|
 | 
						|
  unsigned getNumFixupKinds() const {
 | 
						|
    return 5;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
 | 
						|
    const static MCFixupKindInfo Infos[] = {
 | 
						|
      { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | 
						|
      { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | 
						|
      { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | 
						|
      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | 
						|
      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
 | 
						|
    };
 | 
						|
 | 
						|
    if (Kind < FirstTargetFixupKind)
 | 
						|
      return MCCodeEmitter::getFixupKindInfo(Kind);
 | 
						|
 | 
						|
    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
 | 
						|
           "Invalid kind!");
 | 
						|
    return Infos[Kind - FirstTargetFixupKind];
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned GetX86RegNum(const MCOperand &MO) {
 | 
						|
    return X86RegisterInfo::getX86RegNum(MO.getReg());
 | 
						|
  }
 | 
						|
 | 
						|
  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
 | 
						|
  // 0-7 and the difference between the 2 groups is given by the REX prefix.
 | 
						|
  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
 | 
						|
  // in 1's complement form, example:
 | 
						|
  //
 | 
						|
  //  ModRM field => XMM9 => 1
 | 
						|
  //  VEX.VVVV    => XMM9 => ~9
 | 
						|
  //
 | 
						|
  // See table 4-35 of Intel AVX Programming Reference for details.
 | 
						|
  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
 | 
						|
                                              unsigned OpNum) {
 | 
						|
    unsigned SrcReg = MI.getOperand(OpNum).getReg();
 | 
						|
    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
 | 
						|
    if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
 | 
						|
      SrcRegNum += 8;
 | 
						|
 | 
						|
    // The registers represented through VEX_VVVV should
 | 
						|
    // be encoded in 1's complement form.
 | 
						|
    return (~SrcRegNum) & 0xf;
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    OS << (char)C;
 | 
						|
    ++CurByte;
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
 | 
						|
                    raw_ostream &OS) const {
 | 
						|
    // Output the constant in little endian byte order.
 | 
						|
    for (unsigned i = 0; i != Size; ++i) {
 | 
						|
      EmitByte(Val & 255, CurByte, OS);
 | 
						|
      Val >>= 8;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitImmediate(const MCOperand &Disp,
 | 
						|
                     unsigned ImmSize, MCFixupKind FixupKind,
 | 
						|
                     unsigned &CurByte, raw_ostream &OS,
 | 
						|
                     SmallVectorImpl<MCFixup> &Fixups,
 | 
						|
                     int ImmOffset = 0) const;
 | 
						|
 | 
						|
  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | 
						|
                                        unsigned RM) {
 | 
						|
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | 
						|
    return RM | (RegOpcode << 3) | (Mod << 6);
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
 | 
						|
                        unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
 | 
						|
                   unsigned &CurByte, raw_ostream &OS) const {
 | 
						|
    // SIB byte is in the same format as the ModRMByte.
 | 
						|
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | 
						|
                        unsigned RegOpcodeField,
 | 
						|
                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
 | 
						|
                        SmallVectorImpl<MCFixup> &Fixups) const;
 | 
						|
 | 
						|
  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
 | 
						|
                         SmallVectorImpl<MCFixup> &Fixups) const;
 | 
						|
 | 
						|
  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | 
						|
                           const MCInst &MI, const TargetInstrDesc &Desc,
 | 
						|
                           raw_ostream &OS) const;
 | 
						|
 | 
						|
  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                 int MemOperand, const MCInst &MI,
 | 
						|
                                 raw_ostream &OS) const;
 | 
						|
 | 
						|
  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | 
						|
                        const MCInst &MI, const TargetInstrDesc &Desc,
 | 
						|
                        raw_ostream &OS) const;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
 | 
						|
                                               TargetMachine &TM,
 | 
						|
                                               MCContext &Ctx) {
 | 
						|
  return new X86MCCodeEmitter(TM, Ctx, false);
 | 
						|
}
 | 
						|
 | 
						|
MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
 | 
						|
                                               TargetMachine &TM,
 | 
						|
                                               MCContext &Ctx) {
 | 
						|
  return new X86MCCodeEmitter(TM, Ctx, true);
 | 
						|
}
 | 
						|
 | 
						|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
 | 
						|
/// sign-extended field.
 | 
						|
static bool isDisp8(int Value) {
 | 
						|
  return Value == (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
 | 
						|
/// in an instruction with the specified TSFlags.
 | 
						|
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
 | 
						|
  unsigned Size = X86II::getSizeOfImm(TSFlags);
 | 
						|
  bool isPCRel = X86II::isImmPCRel(TSFlags);
 | 
						|
 | 
						|
  switch (Size) {
 | 
						|
  default: assert(0 && "Unknown immediate size");
 | 
						|
  case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
 | 
						|
  case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
 | 
						|
  case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
 | 
						|
  case 8: assert(!isPCRel); return FK_Data_8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void X86MCCodeEmitter::
 | 
						|
EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
 | 
						|
              unsigned &CurByte, raw_ostream &OS,
 | 
						|
              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
 | 
						|
  // If this is a simple integer displacement that doesn't require a relocation,
 | 
						|
  // emit it now.
 | 
						|
  if (DispOp.isImm()) {
 | 
						|
    // FIXME: is this right for pc-rel encoding??  Probably need to emit this as
 | 
						|
    // a fixup if so.
 | 
						|
    EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have an immoffset, add it to the expression.
 | 
						|
  const MCExpr *Expr = DispOp.getExpr();
 | 
						|
 | 
						|
  // If the fixup is pc-relative, we need to bias the value to be relative to
 | 
						|
  // the start of the field, not the end of the field.
 | 
						|
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
 | 
						|
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
 | 
						|
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
 | 
						|
    ImmOffset -= 4;
 | 
						|
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
 | 
						|
    ImmOffset -= 2;
 | 
						|
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
 | 
						|
    ImmOffset -= 1;
 | 
						|
 | 
						|
  if (ImmOffset)
 | 
						|
    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
 | 
						|
                                   Ctx);
 | 
						|
 | 
						|
  // Emit a symbolic constant as a fixup and 4 zeros.
 | 
						|
  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
 | 
						|
  EmitConstant(0, Size, CurByte, OS);
 | 
						|
}
 | 
						|
 | 
						|
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | 
						|
                                        unsigned RegOpcodeField,
 | 
						|
                                        uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                        raw_ostream &OS,
 | 
						|
                                        SmallVectorImpl<MCFixup> &Fixups) const{
 | 
						|
  const MCOperand &Disp     = MI.getOperand(Op+3);
 | 
						|
  const MCOperand &Base     = MI.getOperand(Op);
 | 
						|
  const MCOperand &Scale    = MI.getOperand(Op+1);
 | 
						|
  const MCOperand &IndexReg = MI.getOperand(Op+2);
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
 | 
						|
  // Handle %rip relative addressing.
 | 
						|
  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
 | 
						|
    assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
 | 
						|
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | 
						|
 | 
						|
    unsigned FixupKind = X86::reloc_riprel_4byte;
 | 
						|
 | 
						|
    // movq loads are handled with a special relocation form which allows the
 | 
						|
    // linker to eliminate some loads for GOT references which end up in the
 | 
						|
    // same linkage unit.
 | 
						|
    if (MI.getOpcode() == X86::MOV64rm ||
 | 
						|
        MI.getOpcode() == X86::MOV64rm_TC)
 | 
						|
      FixupKind = X86::reloc_riprel_4byte_movq_load;
 | 
						|
 | 
						|
    // rip-relative addressing is actually relative to the *next* instruction.
 | 
						|
    // Since an immediate can follow the mod/rm byte for an instruction, this
 | 
						|
    // means that we need to bias the immediate field of the instruction with
 | 
						|
    // the size of the immediate field.  If we have this case, add it into the
 | 
						|
    // expression to emit.
 | 
						|
    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
 | 
						|
 | 
						|
    EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
 | 
						|
                  CurByte, OS, Fixups, -ImmSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
 | 
						|
 | 
						|
  // Determine whether a SIB byte is needed.
 | 
						|
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
 | 
						|
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
 | 
						|
  // 2-7) and absolute references.
 | 
						|
 | 
						|
  if (// The SIB byte must be used if there is an index register.
 | 
						|
      IndexReg.getReg() == 0 &&
 | 
						|
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
 | 
						|
      // encode to an R/M value of 4, which indicates that a SIB byte is
 | 
						|
      // present.
 | 
						|
      BaseRegNo != N86::ESP &&
 | 
						|
      // If there is no base register and we're in 64-bit mode, we need a SIB
 | 
						|
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
 | 
						|
      (!Is64BitMode || BaseReg != 0)) {
 | 
						|
 | 
						|
    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
 | 
						|
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | 
						|
      EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the base is not EBP/ESP and there is no displacement, use simple
 | 
						|
    // indirect register encoding, this handles addresses like [EAX].  The
 | 
						|
    // encoding for [EBP] with no displacement means [disp32] so we handle it
 | 
						|
    // by emitting a displacement of 0 below.
 | 
						|
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
 | 
						|
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
 | 
						|
    if (Disp.isImm() && isDisp8(Disp.getImm())) {
 | 
						|
      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
      EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
 | 
						|
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
  assert(IndexReg.getReg() != X86::ESP &&
 | 
						|
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
  bool ForceDisp32 = false;
 | 
						|
  bool ForceDisp8  = false;
 | 
						|
  if (BaseReg == 0) {
 | 
						|
    // If there is no base register, we emit the special case SIB byte with
 | 
						|
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp32 = true;
 | 
						|
  } else if (!Disp.isImm()) {
 | 
						|
    // Emit the normal disp32 encoding.
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp32 = true;
 | 
						|
  } else if (Disp.getImm() == 0 &&
 | 
						|
             // Base reg can't be anything that ends up with '5' as the base
 | 
						|
             // reg, it is the magic [*] nomenclature that indicates no base.
 | 
						|
             BaseRegNo != N86::EBP) {
 | 
						|
    // Emit no displacement ModR/M byte
 | 
						|
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | 
						|
  } else if (isDisp8(Disp.getImm())) {
 | 
						|
    // Emit the disp8 encoding.
 | 
						|
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
 | 
						|
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
  } else {
 | 
						|
    // Emit the normal disp32 encoding.
 | 
						|
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate what the SS field value should be...
 | 
						|
  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | 
						|
  unsigned SS = SSTable[Scale.getImm()];
 | 
						|
 | 
						|
  if (BaseReg == 0) {
 | 
						|
    // Handle the SIB byte for the case where there is no base, see Intel
 | 
						|
    // Manual 2A, table 2-7. The displacement has already been output.
 | 
						|
    unsigned IndexRegNo;
 | 
						|
    if (IndexReg.getReg())
 | 
						|
      IndexRegNo = GetX86RegNum(IndexReg);
 | 
						|
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
 | 
						|
      IndexRegNo = 4;
 | 
						|
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
 | 
						|
  } else {
 | 
						|
    unsigned IndexRegNo;
 | 
						|
    if (IndexReg.getReg())
 | 
						|
      IndexRegNo = GetX86RegNum(IndexReg);
 | 
						|
    else
 | 
						|
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | 
						|
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Do we need to output a displacement?
 | 
						|
  if (ForceDisp8)
 | 
						|
    EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
 | 
						|
  else if (ForceDisp32 || Disp.getImm() != 0)
 | 
						|
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
 | 
						|
/// called VEX.
 | 
						|
void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                           int MemOperand, const MCInst &MI,
 | 
						|
                                           const TargetInstrDesc &Desc,
 | 
						|
                                           raw_ostream &OS) const {
 | 
						|
  bool HasVEX_4V = false;
 | 
						|
  if ((TSFlags >> 32) & X86II::VEX_4V)
 | 
						|
    HasVEX_4V = true;
 | 
						|
 | 
						|
  // VEX_R: opcode externsion equivalent to REX.R in
 | 
						|
  // 1's complement (inverted) form
 | 
						|
  //
 | 
						|
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
 | 
						|
  //  0: Same as REX_R=1 (64 bit mode only)
 | 
						|
  //
 | 
						|
  unsigned char VEX_R = 0x1;
 | 
						|
 | 
						|
  // VEX_X: equivalent to REX.X, only used when a
 | 
						|
  // register is used for index in SIB Byte.
 | 
						|
  //
 | 
						|
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
 | 
						|
  //  0: Same as REX.X=1 (64-bit mode only)
 | 
						|
  unsigned char VEX_X = 0x1;
 | 
						|
 | 
						|
  // VEX_B:
 | 
						|
  //
 | 
						|
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
 | 
						|
  //  0: Same as REX_B=1 (64 bit mode only)
 | 
						|
  //
 | 
						|
  unsigned char VEX_B = 0x1;
 | 
						|
 | 
						|
  // VEX_W: opcode specific (use like REX.W, or used for
 | 
						|
  // opcode extension, or ignored, depending on the opcode byte)
 | 
						|
  unsigned char VEX_W = 0;
 | 
						|
 | 
						|
  // VEX_5M (VEX m-mmmmm field):
 | 
						|
  //
 | 
						|
  //  0b00000: Reserved for future use
 | 
						|
  //  0b00001: implied 0F leading opcode
 | 
						|
  //  0b00010: implied 0F 38 leading opcode bytes
 | 
						|
  //  0b00011: implied 0F 3A leading opcode bytes
 | 
						|
  //  0b00100-0b11111: Reserved for future use
 | 
						|
  //
 | 
						|
  unsigned char VEX_5M = 0x1;
 | 
						|
 | 
						|
  // VEX_4V (VEX vvvv field): a register specifier
 | 
						|
  // (in 1's complement form) or 1111 if unused.
 | 
						|
  unsigned char VEX_4V = 0xf;
 | 
						|
 | 
						|
  // VEX_L (Vector Length):
 | 
						|
  //
 | 
						|
  //  0: scalar or 128-bit vector
 | 
						|
  //  1: 256-bit vector
 | 
						|
  //
 | 
						|
  unsigned char VEX_L = 0;
 | 
						|
 | 
						|
  // VEX_PP: opcode extension providing equivalent
 | 
						|
  // functionality of a SIMD prefix
 | 
						|
  //
 | 
						|
  //  0b00: None
 | 
						|
  //  0b01: 66
 | 
						|
  //  0b10: F3
 | 
						|
  //  0b11: F2
 | 
						|
  //
 | 
						|
  unsigned char VEX_PP = 0;
 | 
						|
 | 
						|
  // Encode the operand size opcode prefix as needed.
 | 
						|
  if (TSFlags & X86II::OpSize)
 | 
						|
    VEX_PP = 0x01;
 | 
						|
 | 
						|
  if ((TSFlags >> 32) & X86II::VEX_W)
 | 
						|
    VEX_W = 1;
 | 
						|
 | 
						|
  switch (TSFlags & X86II::Op0Mask) {
 | 
						|
  default: assert(0 && "Invalid prefix!");
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
    VEX_5M = 0x2;
 | 
						|
    break;
 | 
						|
  case X86II::TA:  // 0F 3A
 | 
						|
    VEX_5M = 0x3;
 | 
						|
    break;
 | 
						|
  case X86II::TF:  // F2 0F 38
 | 
						|
    VEX_PP = 0x3;
 | 
						|
    VEX_5M = 0x2;
 | 
						|
    break;
 | 
						|
  case X86II::XS:  // F3 0F
 | 
						|
    VEX_PP = 0x2;
 | 
						|
    break;
 | 
						|
  case X86II::XD:  // F2 0F
 | 
						|
    VEX_PP = 0x3;
 | 
						|
    break;
 | 
						|
  case X86II::TB:  // Bypass: Not used by VEX
 | 
						|
  case 0:
 | 
						|
    break;  // No prefix!
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumOps = MI.getNumOperands();
 | 
						|
  unsigned CurOp = 0;
 | 
						|
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
  case X86II::MRMDestMem:
 | 
						|
    NumOps = CurOp = X86::AddrNumOperands;
 | 
						|
  case X86II::MRMSrcMem:
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_R = 0x0;
 | 
						|
 | 
						|
    // CurOp and NumOps are equal when VEX_R represents a register used
 | 
						|
    // to index a memory destination (which is the last operand)
 | 
						|
    CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
 | 
						|
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
      CurOp++;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the last register should be encoded in the immediate field
 | 
						|
    // do not use any bit from VEX prefix to this register, ignore it
 | 
						|
    if ((TSFlags >> 32) & X86II::VEX_I8IMM)
 | 
						|
      NumOps--;
 | 
						|
 | 
						|
    for (; CurOp != NumOps; ++CurOp) {
 | 
						|
      const MCOperand &MO = MI.getOperand(CurOp);
 | 
						|
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        VEX_B = 0x0;
 | 
						|
      if (!VEX_B && MO.isReg() &&
 | 
						|
          ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
 | 
						|
          X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        VEX_X = 0x0;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default: // MRMDestReg, MRM0r-MRM7r
 | 
						|
    if (MI.getOperand(CurOp).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | 
						|
      VEX_B = 0;
 | 
						|
 | 
						|
    if (HasVEX_4V)
 | 
						|
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | 
						|
 | 
						|
    CurOp++;
 | 
						|
    for (; CurOp != NumOps; ++CurOp) {
 | 
						|
      const MCOperand &MO = MI.getOperand(CurOp);
 | 
						|
      if (MO.isReg() && !HasVEX_4V &&
 | 
						|
          X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        VEX_R = 0x0;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    assert(0 && "Not implemented!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit segment override opcode prefix as needed.
 | 
						|
  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
 | 
						|
 | 
						|
  // VEX opcode prefix can have 2 or 3 bytes
 | 
						|
  //
 | 
						|
  //  3 bytes:
 | 
						|
  //    +-----+ +--------------+ +-------------------+
 | 
						|
  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
 | 
						|
  //    +-----+ +--------------+ +-------------------+
 | 
						|
  //  2 bytes:
 | 
						|
  //    +-----+ +-------------------+
 | 
						|
  //    | C5h | | R | vvvv | L | pp |
 | 
						|
  //    +-----+ +-------------------+
 | 
						|
  //
 | 
						|
  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
 | 
						|
 | 
						|
  if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
 | 
						|
    EmitByte(0xC5, CurByte, OS);
 | 
						|
    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // 3 byte VEX prefix
 | 
						|
  EmitByte(0xC4, CurByte, OS);
 | 
						|
  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
 | 
						|
  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
 | 
						|
}
 | 
						|
 | 
						|
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
 | 
						|
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | 
						|
/// size, and 3) use of X86-64 extended registers.
 | 
						|
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
 | 
						|
                                   const TargetInstrDesc &Desc) {
 | 
						|
  unsigned REX = 0;
 | 
						|
  if (TSFlags & X86II::REX_W)
 | 
						|
    REX |= 1 << 3; // set REX.W
 | 
						|
 | 
						|
  if (MI.getNumOperands() == 0) return REX;
 | 
						|
 | 
						|
  unsigned NumOps = MI.getNumOperands();
 | 
						|
  // FIXME: MCInst should explicitize the two-addrness.
 | 
						|
  bool isTwoAddr = NumOps > 1 &&
 | 
						|
                      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
 | 
						|
 | 
						|
  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | 
						|
  unsigned i = isTwoAddr ? 1 : 0;
 | 
						|
  for (; i != NumOps; ++i) {
 | 
						|
    const MCOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
 | 
						|
    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
 | 
						|
    // that returns non-zero.
 | 
						|
    REX |= 0x40; // REX fixed encoding prefix
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (; i != NumOps; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        REX |= 1 << 0; // set REX.B
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    unsigned Bit = 0;
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (; i != NumOps; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
 | 
						|
        Bit++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
 | 
						|
    i = isTwoAddr ? 1 : 0;
 | 
						|
    if (NumOps > e && MI.getOperand(e).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
 | 
						|
      REX |= 1 << 2; // set REX.R
 | 
						|
    unsigned Bit = 0;
 | 
						|
    for (; i != e; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
 | 
						|
        Bit++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    if (MI.getOperand(0).isReg() &&
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | 
						|
      REX |= 1 << 0; // set REX.B
 | 
						|
    i = isTwoAddr ? 2 : 1;
 | 
						|
    for (unsigned e = NumOps; i != e; ++i) {
 | 
						|
      const MCOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | 
						|
        REX |= 1 << 2; // set REX.R
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return REX;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
 | 
						|
void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
 | 
						|
                                        unsigned &CurByte, int MemOperand,
 | 
						|
                                        const MCInst &MI,
 | 
						|
                                        raw_ostream &OS) const {
 | 
						|
  switch (TSFlags & X86II::SegOvrMask) {
 | 
						|
  default: assert(0 && "Invalid segment!");
 | 
						|
  case 0:
 | 
						|
    // No segment override, check for explicit one on memory operand.
 | 
						|
    if (MemOperand != -1) {   // If the instruction has a memory operand.
 | 
						|
      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
 | 
						|
      default: assert(0 && "Unknown segment register!");
 | 
						|
      case 0: break;
 | 
						|
      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
 | 
						|
      case X86::SS: EmitByte(0x36, CurByte, OS); break;
 | 
						|
      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
 | 
						|
      case X86::ES: EmitByte(0x26, CurByte, OS); break;
 | 
						|
      case X86::FS: EmitByte(0x64, CurByte, OS); break;
 | 
						|
      case X86::GS: EmitByte(0x65, CurByte, OS); break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case X86II::FS:
 | 
						|
    EmitByte(0x64, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::GS:
 | 
						|
    EmitByte(0x65, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
 | 
						|
///
 | 
						|
/// MemOperand is the operand # of the start of a memory operand if present.  If
 | 
						|
/// Not present, it is -1.
 | 
						|
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | 
						|
                                        int MemOperand, const MCInst &MI,
 | 
						|
                                        const TargetInstrDesc &Desc,
 | 
						|
                                        raw_ostream &OS) const {
 | 
						|
 | 
						|
  // Emit the lock opcode prefix as needed.
 | 
						|
  if (TSFlags & X86II::LOCK)
 | 
						|
    EmitByte(0xF0, CurByte, OS);
 | 
						|
 | 
						|
  // Emit segment override opcode prefix as needed.
 | 
						|
  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
 | 
						|
    EmitByte(0xF3, CurByte, OS);
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if (TSFlags & X86II::OpSize)
 | 
						|
    EmitByte(0x66, CurByte, OS);
 | 
						|
 | 
						|
  // Emit the address size opcode prefix as needed.
 | 
						|
  if (TSFlags & X86II::AdSize)
 | 
						|
    EmitByte(0x67, CurByte, OS);
 | 
						|
 | 
						|
  bool Need0FPrefix = false;
 | 
						|
  switch (TSFlags & X86II::Op0Mask) {
 | 
						|
  default: assert(0 && "Invalid prefix!");
 | 
						|
  case 0: break;  // No prefix!
 | 
						|
  case X86II::REP: break; // already handled.
 | 
						|
  case X86II::TB:  // Two-byte opcode prefix
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
  case X86II::TA:  // 0F 3A
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::TF: // F2 0F 38
 | 
						|
    EmitByte(0xF2, CurByte, OS);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::XS:   // F3 0F
 | 
						|
    EmitByte(0xF3, CurByte, OS);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2 0F
 | 
						|
    EmitByte(0xF2, CurByte, OS);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
 | 
						|
  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
 | 
						|
  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
 | 
						|
  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
 | 
						|
  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
 | 
						|
  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
 | 
						|
  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
 | 
						|
  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle REX prefix.
 | 
						|
  // FIXME: Can this come before F2 etc to simplify emission?
 | 
						|
  if (Is64BitMode) {
 | 
						|
    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
 | 
						|
      EmitByte(0x40 | REX, CurByte, OS);
 | 
						|
  }
 | 
						|
 | 
						|
  // 0x0F escape code must be emitted just before the opcode.
 | 
						|
  if (Need0FPrefix)
 | 
						|
    EmitByte(0x0F, CurByte, OS);
 | 
						|
 | 
						|
  // FIXME: Pull this up into previous switch if REX can be moved earlier.
 | 
						|
  switch (TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TF:    // F2 0F 38
 | 
						|
  case X86II::T8:    // 0F 38
 | 
						|
    EmitByte(0x38, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::TA:    // 0F 3A
 | 
						|
    EmitByte(0x3A, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86MCCodeEmitter::
 | 
						|
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
 | 
						|
                  SmallVectorImpl<MCFixup> &Fixups) const {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  const TargetInstrDesc &Desc = TII.get(Opcode);
 | 
						|
  uint64_t TSFlags = Desc.TSFlags;
 | 
						|
 | 
						|
  // Pseudo instructions don't get encoded.
 | 
						|
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a two-address instruction, skip one of the register operands.
 | 
						|
  // FIXME: This should be handled during MCInst lowering.
 | 
						|
  unsigned NumOps = Desc.getNumOperands();
 | 
						|
  unsigned CurOp = 0;
 | 
						|
  if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
 | 
						|
    ++CurOp;
 | 
						|
  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | 
						|
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | 
						|
    --NumOps;
 | 
						|
 | 
						|
  // Keep track of the current byte being emitted.
 | 
						|
  unsigned CurByte = 0;
 | 
						|
 | 
						|
  // Is this instruction encoded using the AVX VEX prefix?
 | 
						|
  bool HasVEXPrefix = false;
 | 
						|
 | 
						|
  // It uses the VEX.VVVV field?
 | 
						|
  bool HasVEX_4V = false;
 | 
						|
 | 
						|
  if ((TSFlags >> 32) & X86II::VEX)
 | 
						|
    HasVEXPrefix = true;
 | 
						|
  if ((TSFlags >> 32) & X86II::VEX_4V)
 | 
						|
    HasVEX_4V = true;
 | 
						|
 | 
						|
  // Determine where the memory operand starts, if present.
 | 
						|
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
 | 
						|
  if (MemoryOperand != -1) MemoryOperand += CurOp;
 | 
						|
 | 
						|
  if (!HasVEXPrefix)
 | 
						|
    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 | 
						|
  else
 | 
						|
    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 | 
						|
 | 
						|
  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
 | 
						|
  unsigned SrcRegNum = 0;
 | 
						|
  switch (TSFlags & X86II::FormMask) {
 | 
						|
  case X86II::MRMInitReg:
 | 
						|
    assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
 | 
						|
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
 | 
						|
    assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
    assert(0 && "Pseudo instruction shouldn't be emitted");
 | 
						|
  case X86II::RawFrm:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::AddRegFrm:
 | 
						|
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestReg:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitRegModRMByte(MI.getOperand(CurOp),
 | 
						|
                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
 | 
						|
    CurOp += 2;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMDestMem:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitMemModRMByte(MI, CurOp,
 | 
						|
                     GetX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)),
 | 
						|
                     TSFlags, CurByte, OS, Fixups);
 | 
						|
    CurOp += X86::AddrNumOperands + 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    SrcRegNum = CurOp + 1;
 | 
						|
 | 
						|
    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | 
						|
      SrcRegNum++;
 | 
						|
 | 
						|
    EmitRegModRMByte(MI.getOperand(SrcRegNum),
 | 
						|
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
 | 
						|
    CurOp = SrcRegNum + 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    int AddrOperands = X86::AddrNumOperands;
 | 
						|
    unsigned FirstMemOp = CurOp+1;
 | 
						|
    if (HasVEX_4V) {
 | 
						|
      ++AddrOperands;
 | 
						|
      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
 | 
						|
    }
 | 
						|
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
 | 
						|
    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
 | 
						|
                     TSFlags, CurByte, OS, Fixups);
 | 
						|
    CurOp += AddrOperands + 1;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
 | 
						|
      CurOp++;
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitRegModRMByte(MI.getOperand(CurOp++),
 | 
						|
                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
 | 
						|
                     CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
 | 
						|
                     TSFlags, CurByte, OS, Fixups);
 | 
						|
    CurOp += X86::AddrNumOperands;
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C1:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC1, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C2:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC2, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C3:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC3, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C4:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC4, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C8:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC8, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_C9:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xC9, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_E8:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xE8, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_F0:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xF0, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_F8:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xF8, CurByte, OS);
 | 
						|
    break;
 | 
						|
  case X86II::MRM_F9:
 | 
						|
    EmitByte(BaseOpcode, CurByte, OS);
 | 
						|
    EmitByte(0xF9, CurByte, OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a remaining operand, it must be a trailing immediate.  Emit it
 | 
						|
  // according to the right size for the instruction.
 | 
						|
  if (CurOp != NumOps) {
 | 
						|
    // The last source register of a 4 operand instruction in AVX is encoded
 | 
						|
    // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
 | 
						|
    if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
 | 
						|
      const MCOperand &MO = MI.getOperand(CurOp++);
 | 
						|
      bool IsExtReg =
 | 
						|
        X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
 | 
						|
      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
 | 
						|
      RegNum |= GetX86RegNum(MO) << 4;
 | 
						|
      EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
 | 
						|
                    Fixups);
 | 
						|
    } else
 | 
						|
      EmitImmediate(MI.getOperand(CurOp++),
 | 
						|
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | 
						|
                    CurByte, OS, Fixups);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // FIXME: Verify.
 | 
						|
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
 | 
						|
    errs() << "Cannot encode all operands of: ";
 | 
						|
    MI.dump();
 | 
						|
    errs() << '\n';
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 |