mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8648 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1266 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1266 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PhyRegAlloc.cpp ---------------------------------------------------===//
 | 
						|
// 
 | 
						|
//  Register allocation for LLVM.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PhyRegAlloc.h"
 | 
						|
#include "RegAllocCommon.h"
 | 
						|
#include "RegClass.h"
 | 
						|
#include "IGNode.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrAnnot.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionInfo.h"
 | 
						|
#include "llvm/CodeGen/FunctionLiveVarInfo.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include "Support/SetOperations.h"
 | 
						|
#include "Support/CommandLine.h"
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
RegAllocDebugLevel_t DEBUG_RA;
 | 
						|
 | 
						|
static cl::opt<RegAllocDebugLevel_t, true>
 | 
						|
DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
 | 
						|
        cl::desc("enable register allocation debugging information"),
 | 
						|
        cl::values(
 | 
						|
  clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
 | 
						|
  clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
 | 
						|
  clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
 | 
						|
  clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
 | 
						|
  clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
 | 
						|
  clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
 | 
						|
                   0));
 | 
						|
 | 
						|
FunctionPass *getRegisterAllocator(TargetMachine &T) {
 | 
						|
  return new PhyRegAlloc (T);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method initially creates interference graphs (one in each reg class)
 | 
						|
// and IGNodeList (one in each IG). The actual nodes will be pushed later. 
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
void PhyRegAlloc::createIGNodeListsAndIGs() {
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
 | 
						|
 | 
						|
  // hash map iterator
 | 
						|
  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();   
 | 
						|
 | 
						|
  // hash map end
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   
 | 
						|
 | 
						|
  for (; HMI != HMIEnd ; ++HMI ) {
 | 
						|
    if (HMI->first) { 
 | 
						|
      LiveRange *L = HMI->second;   // get the LiveRange
 | 
						|
      if (!L) { 
 | 
						|
        if (DEBUG_RA)
 | 
						|
          std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
 | 
						|
               << RAV(HMI->first) << "****\n";
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // if the Value * is not null, and LR is not yet written to the IGNodeList
 | 
						|
      if (!(L->getUserIGNode())  ) {  
 | 
						|
        RegClass *const RC =           // RegClass of first value in the LR
 | 
						|
          RegClassList[ L->getRegClass()->getID() ];
 | 
						|
        RC->addLRToIG(L);              // add this LR to an IG
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // init RegClassList
 | 
						|
  for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | 
						|
    RegClassList[rc]->createInterferenceGraph();
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method will add all interferences at for a given instruction.
 | 
						|
// Interference occurs only if the LR of Def (Inst or Arg) is of the same reg 
 | 
						|
// class as that of live var. The live var passed to this function is the 
 | 
						|
// LVset AFTER the instruction
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::addInterference(const Value *Def, 
 | 
						|
				  const ValueSet *LVSet,
 | 
						|
				  bool isCallInst) {
 | 
						|
  ValueSet::const_iterator LIt = LVSet->begin();
 | 
						|
 | 
						|
  // get the live range of instruction
 | 
						|
  const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );   
 | 
						|
 | 
						|
  IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
 | 
						|
  assert( IGNodeOfDef );
 | 
						|
 | 
						|
  RegClass *const RCOfDef = LROfDef->getRegClass(); 
 | 
						|
 | 
						|
  // for each live var in live variable set
 | 
						|
  for ( ; LIt != LVSet->end(); ++LIt) {
 | 
						|
 | 
						|
    if (DEBUG_RA >= RA_DEBUG_Verbose)
 | 
						|
      std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";
 | 
						|
 | 
						|
    //  get the live range corresponding to live var
 | 
						|
    LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);
 | 
						|
 | 
						|
    // LROfVar can be null if it is a const since a const 
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LROfVar)
 | 
						|
      if (LROfDef != LROfVar)                  // do not set interf for same LR
 | 
						|
        if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
 | 
						|
          RCOfDef->setInterference( LROfDef, LROfVar);  
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// For a call instruction, this method sets the CallInterference flag in 
 | 
						|
// the LR of each variable live int the Live Variable Set live after the
 | 
						|
// call instruction (except the return value of the call instruction - since
 | 
						|
// the return value does not interfere with that call itself).
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
 | 
						|
				       const ValueSet *LVSetAft) {
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "\n For call inst: " << *MInst;
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
 | 
						|
       LIt != LEnd; ++LIt) {
 | 
						|
 | 
						|
    //  get the live range corresponding to live var
 | 
						|
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); 
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const 
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LR ) {  
 | 
						|
      if (DEBUG_RA >= RA_DEBUG_Interference) {
 | 
						|
        std::cerr << "\n\tLR after Call: ";
 | 
						|
        printSet(*LR);
 | 
						|
      }
 | 
						|
      LR->setCallInterference();
 | 
						|
      if (DEBUG_RA >= RA_DEBUG_Interference) {
 | 
						|
	std::cerr << "\n  ++After adding call interference for LR: " ;
 | 
						|
	printSet(*LR);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  // Now find the LR of the return value of the call
 | 
						|
  // We do this because, we look at the LV set *after* the instruction
 | 
						|
  // to determine, which LRs must be saved across calls. The return value
 | 
						|
  // of the call is live in this set - but it does not interfere with call
 | 
						|
  // (i.e., we can allocate a volatile register to the return value)
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
 | 
						|
  
 | 
						|
  if (const Value *RetVal = argDesc->getReturnValue()) {
 | 
						|
    LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
 | 
						|
    assert( RetValLR && "No LR for RetValue of call");
 | 
						|
    RetValLR->clearCallInterference();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the CALL is an indirect call, find the LR of the function pointer.
 | 
						|
  // That has a call interference because it conflicts with outgoing args.
 | 
						|
  if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
 | 
						|
    LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
 | 
						|
    assert( AddrValLR && "No LR for indirect addr val of call");
 | 
						|
    AddrValLR->setCallInterference();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method will walk thru code and create interferences in the IG of
 | 
						|
// each RegClass. Also, this method calculates the spill cost of each
 | 
						|
// Live Range (it is done in this method to save another pass over the code).
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::buildInterferenceGraphs()
 | 
						|
{
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "Creating interference graphs ...\n";
 | 
						|
 | 
						|
  unsigned BBLoopDepthCost;
 | 
						|
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    const MachineBasicBlock &MBB = *BBI;
 | 
						|
    const BasicBlock *BB = MBB.getBasicBlock();
 | 
						|
 | 
						|
    // find the 10^(loop_depth) of this BB 
 | 
						|
    BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));
 | 
						|
 | 
						|
    // get the iterator for machine instructions
 | 
						|
    MachineBasicBlock::const_iterator MII = MBB.begin();
 | 
						|
 | 
						|
    // iterate over all the machine instructions in BB
 | 
						|
    for ( ; MII != MBB.end(); ++MII) {
 | 
						|
      const MachineInstr *MInst = *MII;
 | 
						|
 | 
						|
      // get the LV set after the instruction
 | 
						|
      const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
 | 
						|
      bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());
 | 
						|
 | 
						|
      if (isCallInst ) {
 | 
						|
	// set the isCallInterference flag of each live range which extends
 | 
						|
	// across this call instruction. This information is used by graph
 | 
						|
	// coloring algorithm to avoid allocating volatile colors to live ranges
 | 
						|
	// that span across calls (since they have to be saved/restored)
 | 
						|
	setCallInterferences(MInst, &LVSetAI);
 | 
						|
      }
 | 
						|
 | 
						|
      // iterate over all MI operands to find defs
 | 
						|
      for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
 | 
						|
             OpE = MInst->end(); OpI != OpE; ++OpI) {
 | 
						|
       	if (OpI.isDefOnly() || OpI.isDefAndUse()) // create a new LR since def
 | 
						|
	  addInterference(*OpI, &LVSetAI, isCallInst);
 | 
						|
 | 
						|
	// Calculate the spill cost of each live range
 | 
						|
	LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
 | 
						|
	if (LR) LR->addSpillCost(BBLoopDepthCost);
 | 
						|
      } 
 | 
						|
 | 
						|
      // if there are multiple defs in this instruction e.g. in SETX
 | 
						|
      if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
 | 
						|
      	addInterf4PseudoInstr(MInst);
 | 
						|
 | 
						|
      // Also add interference for any implicit definitions in a machine
 | 
						|
      // instr (currently, only calls have this).
 | 
						|
      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
 | 
						|
      for (unsigned z=0; z < NumOfImpRefs; z++) 
 | 
						|
        if (MInst->getImplicitOp(z).opIsDefOnly() ||
 | 
						|
	    MInst->getImplicitOp(z).opIsDefAndUse())
 | 
						|
	  addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
 | 
						|
 | 
						|
    } // for all machine instructions in BB
 | 
						|
  } // for all BBs in function
 | 
						|
 | 
						|
  // add interferences for function arguments. Since there are no explicit 
 | 
						|
  // defs in the function for args, we have to add them manually
 | 
						|
  addInterferencesForArgs();          
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "Interference graphs calculated!\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//--------------------------------------------------------------------------
 | 
						|
// Pseudo-instructions may be expanded to multiple instructions by the
 | 
						|
// assembler. Consequently, all the operands must get distinct registers.
 | 
						|
// Therefore, we mark all operands of a pseudo-instruction as interfering
 | 
						|
// with one another.
 | 
						|
//--------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
 | 
						|
  bool setInterf = false;
 | 
						|
 | 
						|
  // iterate over MI operands to find defs
 | 
						|
  for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
 | 
						|
         ItE = MInst->end(); It1 != ItE; ++It1) {
 | 
						|
    const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); 
 | 
						|
    assert((LROfOp1 || !It1.isUseOnly())&&"No LR for Def in PSEUDO insruction");
 | 
						|
 | 
						|
    MachineInstr::const_val_op_iterator It2 = It1;
 | 
						|
    for (++It2; It2 != ItE; ++It2) {
 | 
						|
      const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); 
 | 
						|
 | 
						|
      if (LROfOp2) {
 | 
						|
	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
 | 
						|
	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 | 
						|
 
 | 
						|
	if (RCOfOp1 == RCOfOp2 ){ 
 | 
						|
	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
 | 
						|
	  setInterf = true;
 | 
						|
	}
 | 
						|
      } // if Op2 has a LR
 | 
						|
    } // for all other defs in machine instr
 | 
						|
  } // for all operands in an instruction
 | 
						|
 | 
						|
  if (!setInterf && MInst->getNumOperands() > 2) {
 | 
						|
    std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
 | 
						|
    std::cerr << *MInst;
 | 
						|
    assert(0 && "Interf not set for pseudo instr with > 2 operands" );
 | 
						|
  }
 | 
						|
} 
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method adds interferences for incoming arguments to a function.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::addInterferencesForArgs() {
 | 
						|
  // get the InSet of root BB
 | 
						|
  const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());  
 | 
						|
 | 
						|
  for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
 | 
						|
    // add interferences between args and LVars at start 
 | 
						|
    addInterference(AI, &InSet, false);
 | 
						|
    
 | 
						|
    if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
      std::cerr << " - %% adding interference for  argument " << RAV(AI) << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method is called after register allocation is complete to set the
 | 
						|
// allocated registers in the machine code. This code will add register numbers
 | 
						|
// to MachineOperands that contain a Value. Also it calls target specific
 | 
						|
// methods to produce caller saving instructions. At the end, it adds all
 | 
						|
// additional instructions produced by the register allocator to the 
 | 
						|
// instruction stream. 
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
//-----------------------------
 | 
						|
// Utility functions used below
 | 
						|
//-----------------------------
 | 
						|
inline void
 | 
						|
InsertBefore(MachineInstr* newMI,
 | 
						|
             MachineBasicBlock& MBB,
 | 
						|
             MachineBasicBlock::iterator& MII)
 | 
						|
{
 | 
						|
  MII = MBB.insert(MII, newMI);
 | 
						|
  ++MII;
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
InsertAfter(MachineInstr* newMI,
 | 
						|
            MachineBasicBlock& MBB,
 | 
						|
            MachineBasicBlock::iterator& MII)
 | 
						|
{
 | 
						|
  ++MII;    // insert before the next instruction
 | 
						|
  MII = MBB.insert(MII, newMI);
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
DeleteInstruction(MachineBasicBlock& MBB,
 | 
						|
                  MachineBasicBlock::iterator& MII)
 | 
						|
{
 | 
						|
  MII = MBB.erase(MII);
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
SubstituteInPlace(MachineInstr* newMI,
 | 
						|
                  MachineBasicBlock& MBB,
 | 
						|
                  MachineBasicBlock::iterator MII)
 | 
						|
{
 | 
						|
  *MII = newMI;
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
PrependInstructions(std::vector<MachineInstr *> &IBef,
 | 
						|
                    MachineBasicBlock& MBB,
 | 
						|
                    MachineBasicBlock::iterator& MII,
 | 
						|
                    const std::string& msg)
 | 
						|
{
 | 
						|
  if (!IBef.empty())
 | 
						|
    {
 | 
						|
      MachineInstr* OrigMI = *MII;
 | 
						|
      std::vector<MachineInstr *>::iterator AdIt; 
 | 
						|
      for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt)
 | 
						|
        {
 | 
						|
          if (DEBUG_RA) {
 | 
						|
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | 
						|
            std::cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
 | 
						|
          }
 | 
						|
          InsertBefore(*AdIt, MBB, MII);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
AppendInstructions(std::vector<MachineInstr *> &IAft,
 | 
						|
                   MachineBasicBlock& MBB,
 | 
						|
                   MachineBasicBlock::iterator& MII,
 | 
						|
                   const std::string& msg)
 | 
						|
{
 | 
						|
  if (!IAft.empty())
 | 
						|
    {
 | 
						|
      MachineInstr* OrigMI = *MII;
 | 
						|
      std::vector<MachineInstr *>::iterator AdIt; 
 | 
						|
      for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt )
 | 
						|
        {
 | 
						|
          if (DEBUG_RA) {
 | 
						|
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | 
						|
            std::cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
 | 
						|
          }
 | 
						|
          InsertAfter(*AdIt, MBB, MII);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
 | 
						|
{
 | 
						|
  bool instrNeedsSpills = false;
 | 
						|
 | 
						|
  // First, set the registers for operands in the machine instruction
 | 
						|
  // if a register was successfully allocated.  Do this first because we
 | 
						|
  // will need to know which registers are already used by this instr'n.
 | 
						|
  for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
 | 
						|
    {
 | 
						|
      MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
      if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | 
						|
          Op.getType() ==  MachineOperand::MO_CCRegister)
 | 
						|
        {
 | 
						|
          const Value *const Val =  Op.getVRegValue();
 | 
						|
          if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
 | 
						|
            // Remember if any operand needs spilling
 | 
						|
            instrNeedsSpills |= LR->isMarkedForSpill();
 | 
						|
 | 
						|
            // An operand may have a color whether or not it needs spilling
 | 
						|
            if (LR->hasColor())
 | 
						|
              MInst->SetRegForOperand(OpNum,
 | 
						|
                          MRI.getUnifiedRegNum(LR->getRegClass()->getID(),
 | 
						|
                                               LR->getColor()));
 | 
						|
          }
 | 
						|
        }
 | 
						|
    } // for each operand
 | 
						|
 | 
						|
  return instrNeedsSpills;
 | 
						|
}
 | 
						|
 | 
						|
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
 | 
						|
                                    MachineBasicBlock &MBB)
 | 
						|
{
 | 
						|
  MachineInstr* MInst = *MII;
 | 
						|
  unsigned Opcode = MInst->getOpCode();
 | 
						|
 | 
						|
  // Reset tmp stack positions so they can be reused for each machine instr.
 | 
						|
  MF->getInfo()->popAllTempValues();  
 | 
						|
 | 
						|
  // Mark the operands for which regs have been allocated.
 | 
						|
  bool instrNeedsSpills = markAllocatedRegs(*MII);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Mark that the operands have been updated.  Later,
 | 
						|
  // setRelRegsUsedByThisInst() is called to find registers used by each
 | 
						|
  // MachineInst, and it should not be used for an instruction until
 | 
						|
  // this is done.  This flag just serves as a sanity check.
 | 
						|
  OperandsColoredMap[MInst] = true;
 | 
						|
#endif
 | 
						|
 | 
						|
  // Now insert caller-saving code before/after the call.
 | 
						|
  // Do this before inserting spill code since some registers must be
 | 
						|
  // used by save/restore and spill code should not use those registers.
 | 
						|
  if (TM.getInstrInfo().isCall(Opcode)) {
 | 
						|
    AddedInstrns &AI = AddedInstrMap[MInst];
 | 
						|
    insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
 | 
						|
                           MBB.getBasicBlock());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now insert spill code for remaining operands not allocated to
 | 
						|
  // registers.  This must be done even for call return instructions
 | 
						|
  // since those are not handled by the special code above.
 | 
						|
  if (instrNeedsSpills)
 | 
						|
    for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
 | 
						|
      {
 | 
						|
        MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
        if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | 
						|
            Op.getType() ==  MachineOperand::MO_CCRegister)
 | 
						|
          {
 | 
						|
            const Value* Val = Op.getVRegValue();
 | 
						|
            if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
 | 
						|
              if (LR->isMarkedForSpill())
 | 
						|
                insertCode4SpilledLR(LR, MII, MBB, OpNum);
 | 
						|
          }
 | 
						|
      } // for each operand
 | 
						|
}
 | 
						|
 | 
						|
void PhyRegAlloc::updateMachineCode()
 | 
						|
{
 | 
						|
  // Insert any instructions needed at method entry
 | 
						|
  MachineBasicBlock::iterator MII = MF->front().begin();
 | 
						|
  PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
 | 
						|
                      "At function entry: \n");
 | 
						|
  assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
 | 
						|
         "InstrsAfter should be unnecessary since we are just inserting at "
 | 
						|
         "the function entry point here.");
 | 
						|
  
 | 
						|
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
 | 
						|
    MachineBasicBlock &MBB = *BBI;
 | 
						|
 | 
						|
    // Iterate over all machine instructions in BB and mark operands with
 | 
						|
    // their assigned registers or insert spill code, as appropriate. 
 | 
						|
    // Also, fix operands of call/return instructions.
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
 | 
						|
      if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode()))
 | 
						|
        updateInstruction(MII, MBB);
 | 
						|
 | 
						|
    // Now, move code out of delay slots of branches and returns if needed.
 | 
						|
    // (Also, move "after" code from calls to the last delay slot instruction.)
 | 
						|
    // Moving code out of delay slots is needed in 2 situations:
 | 
						|
    // (1) If this is a branch and it needs instructions inserted after it,
 | 
						|
    //     move any existing instructions out of the delay slot so that the
 | 
						|
    //     instructions can go into the delay slot.  This only supports the
 | 
						|
    //     case that #instrsAfter <= #delay slots.
 | 
						|
    // 
 | 
						|
    // (2) If any instruction in the delay slot needs
 | 
						|
    //     instructions inserted, move it out of the delay slot and before the
 | 
						|
    //     branch because putting code before or after it would be VERY BAD!
 | 
						|
    // 
 | 
						|
    // If the annul bit of the branch is set, neither of these is legal!
 | 
						|
    // If so, we need to handle spill differently but annulling is not yet used.
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB.begin();
 | 
						|
         MII != MBB.end(); ++MII)
 | 
						|
      if (unsigned delaySlots =
 | 
						|
          TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode()))
 | 
						|
        { 
 | 
						|
          MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1);
 | 
						|
          
 | 
						|
          // Check the 2 conditions above:
 | 
						|
          // (1) Does a branch need instructions added after it?
 | 
						|
          // (2) O/w does delay slot instr. need instrns before or after?
 | 
						|
          bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
 | 
						|
                           TM.getInstrInfo().isReturn(MInst->getOpCode()));
 | 
						|
          bool cond1 = (isBranch &&
 | 
						|
                        AddedInstrMap.count(MInst) &&
 | 
						|
                        AddedInstrMap[MInst].InstrnsAfter.size() > 0);
 | 
						|
          bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
 | 
						|
                        (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
 | 
						|
                         AddedInstrMap[DelaySlotMI].InstrnsAfter.size()  > 0));
 | 
						|
 | 
						|
          if (cond1 || cond2)
 | 
						|
            {
 | 
						|
              assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 &&
 | 
						|
                     "FIXME: Moving an annulled delay slot instruction!"); 
 | 
						|
              assert(delaySlots==1 &&
 | 
						|
                     "InsertBefore does not yet handle >1 delay slots!");
 | 
						|
              InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch
 | 
						|
 | 
						|
              // In case (1), delete it and don't replace with anything!
 | 
						|
              // Otherwise (i.e., case (2) only) replace it with a NOP.
 | 
						|
              if (cond1) {
 | 
						|
                DeleteInstruction(MBB, ++MII); // MII now points to next inst.
 | 
						|
                --MII;                         // reset MII for ++MII of loop
 | 
						|
              }
 | 
						|
              else
 | 
						|
                SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1),
 | 
						|
                                  MBB, MII+1);        // replace with NOP
 | 
						|
 | 
						|
              if (DEBUG_RA) {
 | 
						|
                std::cerr << "\nRegAlloc: Moved instr. with added code: "
 | 
						|
                     << *DelaySlotMI
 | 
						|
                     << "           out of delay slots of instr: " << *MInst;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          else
 | 
						|
            // For non-branch instr with delay slots (probably a call), move
 | 
						|
            // InstrAfter to the instr. in the last delay slot.
 | 
						|
            move2DelayedInstr(*MII, *(MII+delaySlots));
 | 
						|
        }
 | 
						|
 | 
						|
    // Finally iterate over all instructions in BB and insert before/after
 | 
						|
    for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
 | 
						|
      MachineInstr *MInst = *MII; 
 | 
						|
 | 
						|
      // do not process Phis
 | 
						|
      if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode()))
 | 
						|
	continue;
 | 
						|
 | 
						|
      // if there are any added instructions...
 | 
						|
      if (AddedInstrMap.count(MInst)) {
 | 
						|
        AddedInstrns &CallAI = AddedInstrMap[MInst];
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
 | 
						|
                         TM.getInstrInfo().isReturn(MInst->getOpCode()));
 | 
						|
        assert((!isBranch ||
 | 
						|
                AddedInstrMap[MInst].InstrnsAfter.size() <=
 | 
						|
                TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) &&
 | 
						|
               "Cannot put more than #delaySlots instrns after "
 | 
						|
               "branch or return! Need to handle temps differently.");
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        // Temporary sanity checking code to detect whether the same machine
 | 
						|
        // instruction is ever inserted twice before/after a call.
 | 
						|
        // I suspect this is happening but am not sure. --Vikram, 7/1/03.
 | 
						|
        std::set<const MachineInstr*> instrsSeen;
 | 
						|
        for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
 | 
						|
          assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
 | 
						|
                 "Duplicate machine instruction in InstrnsBefore!");
 | 
						|
          instrsSeen.insert(CallAI.InstrnsBefore[i]);
 | 
						|
        } 
 | 
						|
        for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
 | 
						|
          assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
 | 
						|
                 "Duplicate machine instruction in InstrnsBefore/After!");
 | 
						|
          instrsSeen.insert(CallAI.InstrnsAfter[i]);
 | 
						|
        } 
 | 
						|
#endif
 | 
						|
 | 
						|
        // Now add the instructions before/after this MI.
 | 
						|
        // We do this here to ensure that spill for an instruction is inserted
 | 
						|
        // as close as possible to an instruction (see above insertCode4Spill)
 | 
						|
        if (! CallAI.InstrnsBefore.empty())
 | 
						|
          PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
 | 
						|
        
 | 
						|
        if (! CallAI.InstrnsAfter.empty())
 | 
						|
          AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");
 | 
						|
 | 
						|
      } // if there are any added instructions
 | 
						|
    } // for each machine instruction
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method inserts spill code for AN operand whose LR was spilled.
 | 
						|
// This method may be called several times for a single machine instruction
 | 
						|
// if it contains many spilled operands. Each time it is called, it finds
 | 
						|
// a register which is not live at that instruction and also which is not
 | 
						|
// used by other spilled operands of the same instruction. Then it uses
 | 
						|
// this register temporarily to accommodate the spilled value.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
 | 
						|
                                       MachineBasicBlock::iterator& MII,
 | 
						|
                                       MachineBasicBlock &MBB,
 | 
						|
				       const unsigned OpNum) {
 | 
						|
  MachineInstr *MInst = *MII;
 | 
						|
  const BasicBlock *BB = MBB.getBasicBlock();
 | 
						|
 | 
						|
  assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) &&
 | 
						|
         "Outgoing arg of a call must be handled elsewhere (func arg ok)");
 | 
						|
  assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) &&
 | 
						|
	 "Return value of a ret must be handled elsewhere");
 | 
						|
 | 
						|
  MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
  bool isDef =  Op.opIsDefOnly();
 | 
						|
  bool isDefAndUse = Op.opIsDefAndUse();
 | 
						|
  unsigned RegType = MRI.getRegTypeForLR(LR);
 | 
						|
  int SpillOff = LR->getSpillOffFromFP();
 | 
						|
  RegClass *RC = LR->getRegClass();
 | 
						|
 | 
						|
  // Get the live-variable set to find registers free before this instr.
 | 
						|
  const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If this instr. is in the delay slot of a branch or return, we need to
 | 
						|
  // include all live variables before that branch or return -- we don't want to
 | 
						|
  // trample those!  Verify that the set is included in the LV set before MInst.
 | 
						|
  if (MII != MBB.begin()) {
 | 
						|
    MachineInstr *PredMI = *(MII-1);
 | 
						|
    if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode()))
 | 
						|
      assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
 | 
						|
             .empty() && "Live-var set before branch should be included in "
 | 
						|
             "live-var set of each delay slot instruction!");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType) );
 | 
						|
  
 | 
						|
  std::vector<MachineInstr*> MIBef, MIAft;
 | 
						|
  std::vector<MachineInstr*> AdIMid;
 | 
						|
  
 | 
						|
  // Choose a register to hold the spilled value, if one was not preallocated.
 | 
						|
  // This may insert code before and after MInst to free up the value.  If so,
 | 
						|
  // this code should be first/last in the spill sequence before/after MInst.
 | 
						|
  int TmpRegU=(LR->hasColor()
 | 
						|
               ? MRI.getUnifiedRegNum(LR->getRegClass()->getID(),LR->getColor())
 | 
						|
               : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
 | 
						|
  
 | 
						|
  // Set the operand first so that it this register does not get used
 | 
						|
  // as a scratch register for later calls to getUsableUniRegAtMI below
 | 
						|
  MInst->SetRegForOperand(OpNum, TmpRegU);
 | 
						|
  
 | 
						|
  // get the added instructions for this instruction
 | 
						|
  AddedInstrns &AI = AddedInstrMap[MInst];
 | 
						|
 | 
						|
  // We may need a scratch register to copy the spilled value to/from memory.
 | 
						|
  // This may itself have to insert code to free up a scratch register.  
 | 
						|
  // Any such code should go before (after) the spill code for a load (store).
 | 
						|
  // The scratch reg is not marked as used because it is only used
 | 
						|
  // for the copy and not used across MInst.
 | 
						|
  int scratchRegType = -1;
 | 
						|
  int scratchReg = -1;
 | 
						|
  if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
    {
 | 
						|
      scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | 
						|
                                       MInst, MIBef, MIAft);
 | 
						|
      assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (!isDef || isDefAndUse) {
 | 
						|
    // for a USE, we have to load the value of LR from stack to a TmpReg
 | 
						|
    // and use the TmpReg as one operand of instruction
 | 
						|
    
 | 
						|
    // actual loading instruction(s)
 | 
						|
    MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
 | 
						|
                    RegType, scratchReg);
 | 
						|
    
 | 
						|
    // the actual load should be after the instructions to free up TmpRegU
 | 
						|
    MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
 | 
						|
    AdIMid.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isDef || isDefAndUse) {   // if this is a Def
 | 
						|
    // for a DEF, we have to store the value produced by this instruction
 | 
						|
    // on the stack position allocated for this LR
 | 
						|
    
 | 
						|
    // actual storing instruction(s)
 | 
						|
    MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
 | 
						|
                    RegType, scratchReg);
 | 
						|
    
 | 
						|
    MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
 | 
						|
  }  // if !DEF
 | 
						|
  
 | 
						|
  // Finally, insert the entire spill code sequences before/after MInst
 | 
						|
  AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
 | 
						|
  AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
 | 
						|
  
 | 
						|
  if (DEBUG_RA) {
 | 
						|
    std::cerr << "\nFor Inst:\n  " << *MInst;
 | 
						|
    std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
 | 
						|
    std::cerr << "; added Instructions:";
 | 
						|
    for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
 | 
						|
    for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method inserts caller saving/restoring instructions before/after
 | 
						|
// a call machine instruction. The caller saving/restoring instructions are
 | 
						|
// inserted like:
 | 
						|
//    ** caller saving instructions
 | 
						|
//    other instructions inserted for the call by ColorCallArg
 | 
						|
//    CALL instruction
 | 
						|
//    other instructions inserted for the call ColorCallArg
 | 
						|
//    ** caller restoring instructions
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void
 | 
						|
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
 | 
						|
                                    std::vector<MachineInstr*> &instrnsAfter,
 | 
						|
                                    MachineInstr *CallMI, 
 | 
						|
                                    const BasicBlock *BB)
 | 
						|
{
 | 
						|
  assert(TM.getInstrInfo().isCall(CallMI->getOpCode()));
 | 
						|
  
 | 
						|
  // hash set to record which registers were saved/restored
 | 
						|
  hash_set<unsigned> PushedRegSet;
 | 
						|
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
 | 
						|
  
 | 
						|
  // if the call is to a instrumentation function, do not insert save and
 | 
						|
  // restore instructions the instrumentation function takes care of save
 | 
						|
  // restore for volatile regs.
 | 
						|
  //
 | 
						|
  // FIXME: this should be made general, not specific to the reoptimizer!
 | 
						|
  const Function *Callee = argDesc->getCallInst()->getCalledFunction();
 | 
						|
  bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";
 | 
						|
 | 
						|
  // Now check if the call has a return value (using argDesc) and if so,
 | 
						|
  // find the LR of the TmpInstruction representing the return value register.
 | 
						|
  // (using the last or second-last *implicit operand* of the call MI).
 | 
						|
  // Insert it to to the PushedRegSet since we must not save that register
 | 
						|
  // and restore it after the call.
 | 
						|
  // We do this because, we look at the LV set *after* the instruction
 | 
						|
  // to determine, which LRs must be saved across calls. The return value
 | 
						|
  // of the call is live in this set - but we must not save/restore it.
 | 
						|
  if (const Value *origRetVal = argDesc->getReturnValue()) {
 | 
						|
    unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
 | 
						|
                             (argDesc->getIndirectFuncPtr()? 1 : 2));
 | 
						|
    const TmpInstruction* tmpRetVal =
 | 
						|
      cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
 | 
						|
    assert(tmpRetVal->getOperand(0) == origRetVal &&
 | 
						|
           tmpRetVal->getType() == origRetVal->getType() &&
 | 
						|
           "Wrong implicit ref?");
 | 
						|
    LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
 | 
						|
    assert(RetValLR && "No LR for RetValue of call");
 | 
						|
 | 
						|
    if (! RetValLR->isMarkedForSpill())
 | 
						|
      PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
 | 
						|
                                               RetValLR->getColor()));
 | 
						|
  }
 | 
						|
 | 
						|
  const ValueSet &LVSetAft =  LVI->getLiveVarSetAfterMInst(CallMI, BB);
 | 
						|
  ValueSet::const_iterator LIt = LVSetAft.begin();
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for( ; LIt != LVSetAft.end(); ++LIt) {
 | 
						|
    // get the live range corresponding to live var
 | 
						|
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const 
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if( LR )   {  
 | 
						|
      if(! LR->isMarkedForSpill()) {
 | 
						|
        assert(LR->hasColor() && "LR is neither spilled nor colored?");
 | 
						|
	unsigned RCID = LR->getRegClassID();
 | 
						|
	unsigned Color = LR->getColor();
 | 
						|
 | 
						|
	if (MRI.isRegVolatile(RCID, Color) ) {
 | 
						|
	  // if this is a call to the first-level reoptimizer
 | 
						|
	  // instrumentation entry point, and the register is not
 | 
						|
	  // modified by call, don't save and restore it.
 | 
						|
	  if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
 | 
						|
	    continue;
 | 
						|
 | 
						|
	  // if the value is in both LV sets (i.e., live before and after 
 | 
						|
	  // the call machine instruction)
 | 
						|
	  unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
 | 
						|
	  
 | 
						|
	  // if we haven't already pushed this register...
 | 
						|
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
 | 
						|
	    unsigned RegType = MRI.getRegTypeForLR(LR);
 | 
						|
 | 
						|
	    // Now get two instructions - to push on stack and pop from stack
 | 
						|
	    // and add them to InstrnsBefore and InstrnsAfter of the
 | 
						|
	    // call instruction
 | 
						|
	    int StackOff =
 | 
						|
              MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | 
						|
            
 | 
						|
	    //---- Insert code for pushing the reg on stack ----------
 | 
						|
            
 | 
						|
	    std::vector<MachineInstr*> AdIBef, AdIAft;
 | 
						|
            
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // to/from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go before
 | 
						|
            // the save code.  The scratch register, if any, is by default
 | 
						|
            // temporary and not "used" by the instruction unless the
 | 
						|
            // copy code itself decides to keep the value in the scratch reg.
 | 
						|
            int scratchRegType = -1;
 | 
						|
            int scratchReg = -1;
 | 
						|
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet before CallMI
 | 
						|
                const ValueSet &LVSetBef =
 | 
						|
                  LVI->getLiveVarSetBeforeMInst(CallMI, BB);
 | 
						|
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | 
						|
                                                 CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
              }
 | 
						|
            
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIBef.begin(), AdIBef.end());
 | 
						|
            
 | 
						|
            MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
 | 
						|
                            StackOff, RegType, scratchReg);
 | 
						|
            
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIAft.begin(), AdIAft.end());
 | 
						|
            
 | 
						|
	    //---- Insert code for popping the reg from the stack ----------
 | 
						|
	    AdIBef.clear();
 | 
						|
            AdIAft.clear();
 | 
						|
            
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go
 | 
						|
            // after the save code.  As above, scratch is not marked "used".
 | 
						|
            scratchRegType = -1;
 | 
						|
            scratchReg = -1;
 | 
						|
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet after CallMI
 | 
						|
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
 | 
						|
                                                 CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
              }
 | 
						|
            
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIBef.begin(), AdIBef.end());
 | 
						|
            
 | 
						|
	    MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
 | 
						|
                            Reg, RegType, scratchReg);
 | 
						|
            
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIAft.begin(), AdIAft.end());
 | 
						|
	    
 | 
						|
	    PushedRegSet.insert(Reg);
 | 
						|
            
 | 
						|
	    if(DEBUG_RA) {
 | 
						|
	      std::cerr << "\nFor call inst:" << *CallMI;
 | 
						|
	      std::cerr << " -inserted caller saving instrs: Before:\n\t ";
 | 
						|
              for_each(instrnsBefore.begin(), instrnsBefore.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	      std::cerr << " -and After:\n\t ";
 | 
						|
              for_each(instrnsAfter.begin(), instrnsAfter.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	    }	    
 | 
						|
	  } // if not already pushed
 | 
						|
	} // if LR has a volatile color
 | 
						|
      } // if LR has color
 | 
						|
    } // if there is a LR for Var
 | 
						|
  } // for each value in the LV set after instruction
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// We can use the following method to get a temporary register to be used
 | 
						|
// BEFORE any given machine instruction. If there is a register available,
 | 
						|
// this method will simply return that register and set MIBef = MIAft = NULL.
 | 
						|
// Otherwise, it will return a register and MIAft and MIBef will contain
 | 
						|
// two instructions used to free up this returned register.
 | 
						|
// Returned register number is the UNIFIED register number
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
 | 
						|
                                     const ValueSet *LVSetBef,
 | 
						|
                                     MachineInstr *MInst, 
 | 
						|
                                     std::vector<MachineInstr*>& MIBef,
 | 
						|
                                     std::vector<MachineInstr*>& MIAft) {
 | 
						|
  RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
 | 
						|
  
 | 
						|
  int RegU =  getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
 | 
						|
  
 | 
						|
  if (RegU == -1) {
 | 
						|
    // we couldn't find an unused register. Generate code to free up a reg by
 | 
						|
    // saving it on stack and restoring after the instruction
 | 
						|
    
 | 
						|
    int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | 
						|
    
 | 
						|
    RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
 | 
						|
    
 | 
						|
    // Check if we need a scratch register to copy this register to memory.
 | 
						|
    int scratchRegType = -1;
 | 
						|
    if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
      {
 | 
						|
        int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
 | 
						|
                                             MInst, MIBef, MIAft);
 | 
						|
        assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
        
 | 
						|
        // We may as well hold the value in the scratch register instead
 | 
						|
        // of copying it to memory and back.  But we have to mark the
 | 
						|
        // register as used by this instruction, so it does not get used
 | 
						|
        // as a scratch reg. by another operand or anyone else.
 | 
						|
        ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
 | 
						|
        MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
 | 
						|
        MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
 | 
						|
      }
 | 
						|
    else
 | 
						|
      { // the register can be copied directly to/from memory so do it.
 | 
						|
        MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
 | 
						|
        MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return RegU;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method is called to get a new unused register that can be used
 | 
						|
// to accommodate a temporary value.  This method may be called several times
 | 
						|
// for a single machine instruction.  Each time it is called, it finds a
 | 
						|
// register which is not live at that instruction and also which is not used
 | 
						|
// by other spilled operands of the same instruction.  Return register number
 | 
						|
// is relative to the register class, NOT the unified number.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, 
 | 
						|
                                     const int RegType,
 | 
						|
                                     const MachineInstr *MInst,
 | 
						|
                                     const ValueSet* LVSetBef) {
 | 
						|
  RC->clearColorsUsed();     // Reset array
 | 
						|
 | 
						|
  if (LVSetBef == NULL) {
 | 
						|
      LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
 | 
						|
      assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
 | 
						|
  }
 | 
						|
 | 
						|
  ValueSet::const_iterator LIt = LVSetBef->begin();
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for ( ; LIt != LVSetBef->end(); ++LIt) {
 | 
						|
    // Get the live range corresponding to live var, and its RegClass
 | 
						|
    LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );    
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const 
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
 | 
						|
      RC->markColorsUsed(LRofLV->getColor(),
 | 
						|
                         MRI.getRegTypeForLR(LRofLV), RegType);
 | 
						|
  }
 | 
						|
 | 
						|
  // It is possible that one operand of this MInst was already spilled
 | 
						|
  // and it received some register temporarily. If that's the case,
 | 
						|
  // it is recorded in machine operand. We must skip such registers.
 | 
						|
  setRelRegsUsedByThisInst(RC, RegType, MInst);
 | 
						|
 | 
						|
  int unusedReg = RC->getUnusedColor(RegType);   // find first unused color
 | 
						|
  if (unusedReg >= 0)
 | 
						|
    return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// Get any other register in a register class, other than what is used
 | 
						|
// by operands of a machine instruction. Returns the unified reg number.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
 | 
						|
                                            const int RegType,
 | 
						|
                                            const MachineInstr *MInst) {
 | 
						|
  RC->clearColorsUsed();
 | 
						|
 | 
						|
  setRelRegsUsedByThisInst(RC, RegType, MInst);
 | 
						|
 | 
						|
  // find the first unused color
 | 
						|
  int unusedReg = RC->getUnusedColor(RegType);
 | 
						|
  assert(unusedReg >= 0 &&
 | 
						|
         "FATAL: No free register could be found in reg class!!");
 | 
						|
 | 
						|
  return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method modifies the IsColorUsedArr of the register class passed to it.
 | 
						|
// It sets the bits corresponding to the registers used by this machine
 | 
						|
// instructions. Both explicit and implicit operands are set.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
 | 
						|
                             const TargetRegInfo &TRI) {
 | 
						|
  unsigned classId = 0;
 | 
						|
  int classRegNum = TRI.getClassRegNum(RegNo, classId);
 | 
						|
  if (RC->getID() == classId)
 | 
						|
    RC->markColorsUsed(classRegNum, RegType, RegType);
 | 
						|
}
 | 
						|
 | 
						|
void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
 | 
						|
                                           const MachineInstr *MI)
 | 
						|
{
 | 
						|
  assert(OperandsColoredMap[MI] == true &&
 | 
						|
         "Illegal to call setRelRegsUsedByThisInst() until colored operands "
 | 
						|
         "are marked for an instruction.");
 | 
						|
 | 
						|
  // Add the registers already marked as used by the instruction.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | 
						|
    if (MI->getOperand(i).hasAllocatedReg())
 | 
						|
      markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
 | 
						|
    if (MI->getImplicitOp(i).hasAllocatedReg())
 | 
						|
      markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC,
 | 
						|
                       RegType,MRI);
 | 
						|
 | 
						|
  // Add all of the scratch registers that are used to save values across the
 | 
						|
  // instruction (e.g., for saving state register values).
 | 
						|
  std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
 | 
						|
    IR = ScratchRegsUsed.equal_range(MI);
 | 
						|
  for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
 | 
						|
    markRegisterUsed(I->second, RC, RegType, MRI);
 | 
						|
 | 
						|
  // If there are implicit references, mark their allocated regs as well
 | 
						|
  for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
 | 
						|
    if (const LiveRange*
 | 
						|
        LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))    
 | 
						|
      if (LRofImpRef->hasColor())
 | 
						|
        // this implicit reference is in a LR that received a color
 | 
						|
        RC->markColorsUsed(LRofImpRef->getColor(),
 | 
						|
                           MRI.getRegTypeForLR(LRofImpRef), RegType);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// If there are delay slots for an instruction, the instructions
 | 
						|
// added after it must really go after the delayed instruction(s).
 | 
						|
// So, we move the InstrAfter of that instruction to the 
 | 
						|
// corresponding delayed instruction using the following method.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
 | 
						|
                                    const MachineInstr *DelayedMI)
 | 
						|
{
 | 
						|
  // "added after" instructions of the original instr
 | 
						|
  std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;
 | 
						|
 | 
						|
  if (DEBUG_RA && OrigAft.size() > 0) {
 | 
						|
    std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
 | 
						|
    std::cerr << "         to last delay slot instrn: " << *DelayedMI;
 | 
						|
  }
 | 
						|
 | 
						|
  // "added after" instructions of the delayed instr
 | 
						|
  std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;
 | 
						|
 | 
						|
  // go thru all the "added after instructions" of the original instruction
 | 
						|
  // and append them to the "added after instructions" of the delayed
 | 
						|
  // instructions
 | 
						|
  DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());
 | 
						|
 | 
						|
  // empty the "added after instructions" of the original instruction
 | 
						|
  OrigAft.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void PhyRegAlloc::colorIncomingArgs()
 | 
						|
{
 | 
						|
  MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
 | 
						|
                      AddedInstrAtEntry.InstrnsAfter);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method calls setSugColorUsable method of each live range. This
 | 
						|
// will determine whether the suggested color of LR is  really usable.
 | 
						|
// A suggested color is not usable when the suggested color is volatile
 | 
						|
// AND when there are call interferences
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::markUnusableSugColors()
 | 
						|
{
 | 
						|
  LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();   
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();   
 | 
						|
 | 
						|
  for (; HMI != HMIEnd ; ++HMI ) {
 | 
						|
    if (HMI->first) { 
 | 
						|
      LiveRange *L = HMI->second;      // get the LiveRange
 | 
						|
      if (L) { 
 | 
						|
	if (L->hasSuggestedColor()) {
 | 
						|
	  int RCID = L->getRegClass()->getID();
 | 
						|
	  if (MRI.isRegVolatile( RCID,  L->getSuggestedColor()) &&
 | 
						|
	      L->isCallInterference() )
 | 
						|
	    L->setSuggestedColorUsable( false );
 | 
						|
	  else
 | 
						|
	    L->setSuggestedColorUsable( true );
 | 
						|
	}
 | 
						|
      } // if L->hasSuggestedColor()
 | 
						|
    }
 | 
						|
  } // for all LR's in hash map
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// The following method will set the stack offsets of the live ranges that
 | 
						|
// are decided to be spilled. This must be called just after coloring the
 | 
						|
// LRs using the graph coloring algo. For each live range that is spilled,
 | 
						|
// this method allocate a new spill position on the stack.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
 | 
						|
  if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
 | 
						|
 | 
						|
  LiveRangeMapType::const_iterator HMI    = LRI->getLiveRangeMap()->begin();   
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   
 | 
						|
 | 
						|
  for ( ; HMI != HMIEnd ; ++HMI) {
 | 
						|
    if (HMI->first && HMI->second) {
 | 
						|
      LiveRange *L = HMI->second;       // get the LiveRange
 | 
						|
      if (L->isMarkedForSpill()) {      // NOTE: allocating size of long Type **
 | 
						|
        int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy);
 | 
						|
        L->setSpillOffFromFP(stackOffset);
 | 
						|
        if (DEBUG_RA)
 | 
						|
          std::cerr << "  LR# " << L->getUserIGNode()->getIndex()
 | 
						|
               << ": stack-offset = " << stackOffset << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // for all LR's in hash map
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// The entry point to Register Allocation
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
bool PhyRegAlloc::runOnFunction (Function &F) { 
 | 
						|
  if (DEBUG_RA) 
 | 
						|
    std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; 
 | 
						|
 
 | 
						|
  Fn = &F; 
 | 
						|
  MF = &MachineFunction::get (Fn); 
 | 
						|
  LVI = &getAnalysis<FunctionLiveVarInfo> (); 
 | 
						|
  LRI = new LiveRangeInfo (Fn, TM, RegClassList); 
 | 
						|
  LoopDepthCalc = &getAnalysis<LoopInfo> (); 
 | 
						|
 
 | 
						|
  // Create each RegClass for the target machine and add it to the 
 | 
						|
  // RegClassList.  This must be done before calling constructLiveRanges().
 | 
						|
  for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)   
 | 
						|
    RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), 
 | 
						|
					  MRI.getMachineRegClass (rc))); 
 | 
						|
     
 | 
						|
  LRI->constructLiveRanges();            // create LR info
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges)
 | 
						|
    LRI->printLiveRanges();
 | 
						|
  
 | 
						|
  createIGNodeListsAndIGs();            // create IGNode list and IGs
 | 
						|
 | 
						|
  buildInterferenceGraphs();            // build IGs in all reg classes
 | 
						|
  
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | 
						|
    // print all LRs in all reg classes
 | 
						|
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
 | 
						|
      RegClassList[rc]->printIGNodeList(); 
 | 
						|
    
 | 
						|
    // print IGs in all register classes
 | 
						|
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | 
						|
      RegClassList[rc]->printIG();       
 | 
						|
  }
 | 
						|
 | 
						|
  LRI->coalesceLRs();                    // coalesce all live ranges
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | 
						|
    // print all LRs in all reg classes
 | 
						|
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | 
						|
      RegClassList[rc]->printIGNodeList();
 | 
						|
    
 | 
						|
    // print IGs in all register classes
 | 
						|
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | 
						|
      RegClassList[rc]->printIG();
 | 
						|
  }
 | 
						|
 | 
						|
  // mark un-usable suggested color before graph coloring algorithm.
 | 
						|
  // When this is done, the graph coloring algo will not reserve
 | 
						|
  // suggested color unnecessarily - they can be used by another LR
 | 
						|
  markUnusableSugColors(); 
 | 
						|
 | 
						|
  // color all register classes using the graph coloring algo
 | 
						|
  for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | 
						|
    RegClassList[rc]->colorAllRegs();    
 | 
						|
 | 
						|
  // After graph coloring, if some LRs did not receive a color (i.e, spilled)
 | 
						|
  // a position for such spilled LRs
 | 
						|
  allocateStackSpace4SpilledLRs();
 | 
						|
 | 
						|
  // Reset the temp. area on the stack before use by the first instruction.
 | 
						|
  // This will also happen after updating each instruction.
 | 
						|
  MF->getInfo()->popAllTempValues();
 | 
						|
 | 
						|
  // color incoming args - if the correct color was not received
 | 
						|
  // insert code to copy to the correct register
 | 
						|
  colorIncomingArgs();
 | 
						|
 | 
						|
  // Now update the machine code with register names and add any 
 | 
						|
  // additional code inserted by the register allocator to the instruction
 | 
						|
  // stream
 | 
						|
  updateMachineCode(); 
 | 
						|
 | 
						|
  if (DEBUG_RA) {
 | 
						|
    std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
 | 
						|
    MF->dump();
 | 
						|
  }
 | 
						|
 
 | 
						|
  // Tear down temporary data structures 
 | 
						|
  for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) 
 | 
						|
    delete RegClassList[rc]; 
 | 
						|
  RegClassList.clear (); 
 | 
						|
  AddedInstrMap.clear (); 
 | 
						|
  OperandsColoredMap.clear (); 
 | 
						|
  ScratchRegsUsed.clear (); 
 | 
						|
  AddedInstrAtEntry.clear (); 
 | 
						|
  delete LRI;
 | 
						|
 | 
						|
  if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; 
 | 
						|
  return false;     // Function was not modified
 | 
						|
} 
 |