mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8191 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			732 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			732 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
 | 
						|
//
 | 
						|
// Scheduling graph based on SSA graph plus extra dependence edges capturing
 | 
						|
// dependences due to machine resources (machine registers, CC registers, and
 | 
						|
// any others).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SchedGraph.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegInfo.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
 | 
						|
//*********************** Internal Data Structures *************************/
 | 
						|
 | 
						|
// The following two types need to be classes, not typedefs, so we can use
 | 
						|
// opaque declarations in SchedGraph.h
 | 
						|
// 
 | 
						|
struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
 | 
						|
  typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
 | 
						|
  typedef
 | 
						|
  std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
struct RegToRefVecMap: public hash_map<int, RefVec> {
 | 
						|
  typedef hash_map<int, RefVec>::      iterator       iterator;
 | 
						|
  typedef hash_map<int, RefVec>::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
 | 
						|
  typedef hash_map<const Value*, RefVec>::      iterator       iterator;
 | 
						|
  typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraphNode
 | 
						|
// 
 | 
						|
 | 
						|
SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
 | 
						|
                               int   indexInBB, const TargetMachine& Target)
 | 
						|
  : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) {
 | 
						|
  if (MI) {
 | 
						|
    MachineOpCode mopCode = MI->getOpCode();
 | 
						|
    latency = Target.getInstrInfo().hasResultInterlock(mopCode)
 | 
						|
      ? Target.getInstrInfo().minLatency(mopCode)
 | 
						|
      : Target.getInstrInfo().maxLatency(mopCode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Method: SchedGraphNode Destructor
 | 
						|
//
 | 
						|
// Description:
 | 
						|
//	Free memory allocated by the SchedGraphNode object.
 | 
						|
//
 | 
						|
// Notes:
 | 
						|
//	Do not delete the edges here.  The base class will take care of that.
 | 
						|
//	Only handle subclass specific stuff here (where currently there is
 | 
						|
//	none).
 | 
						|
//
 | 
						|
SchedGraphNode::~SchedGraphNode() {
 | 
						|
}
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraph
 | 
						|
// 
 | 
						|
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
 | 
						|
  : MBB(mbb) {
 | 
						|
  buildGraph(target);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Method: SchedGraph Destructor
 | 
						|
//
 | 
						|
// Description:
 | 
						|
//	This method deletes memory allocated by the SchedGraph object.
 | 
						|
//
 | 
						|
// Notes:
 | 
						|
//	Do not delete the graphRoot or graphLeaf here.  The base class handles
 | 
						|
//	that bit of work.
 | 
						|
//
 | 
						|
SchedGraph::~SchedGraph() {
 | 
						|
  for (const_iterator I = begin(); I != end(); ++I)
 | 
						|
    delete I->second;
 | 
						|
}
 | 
						|
 | 
						|
void SchedGraph::dump() const {
 | 
						|
  std::cerr << "  Sched Graph for Basic Block: ";
 | 
						|
  std::cerr << MBB.getBasicBlock()->getName()
 | 
						|
            << " (" << MBB.getBasicBlock() << ")";
 | 
						|
  
 | 
						|
  std::cerr << "\n\n    Actual Root nodes : ";
 | 
						|
  for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
 | 
						|
    std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId()
 | 
						|
              << ((i == N-1)? "" : ", ");
 | 
						|
  
 | 
						|
  std::cerr << "\n    Graph Nodes:\n";
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I)
 | 
						|
    std::cerr << "\n" << *I->second;
 | 
						|
  
 | 
						|
  std::cerr << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::addDummyEdges() {
 | 
						|
  assert(graphRoot->outEdges.size() == 0);
 | 
						|
  
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I) {
 | 
						|
    SchedGraphNode* node = (*I).second;
 | 
						|
    assert(node != graphRoot && node != graphLeaf);
 | 
						|
    if (node->beginInEdges() == node->endInEdges())
 | 
						|
      (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
 | 
						|
                                SchedGraphEdge::NonDataDep, 0);
 | 
						|
    if (node->beginOutEdges() == node->endOutEdges())
 | 
						|
      (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
 | 
						|
                                SchedGraphEdge::NonDataDep, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::addCDEdges(const TerminatorInst* term,
 | 
						|
			    const TargetMachine& target) {
 | 
						|
  const TargetInstrInfo& mii = target.getInstrInfo();
 | 
						|
  MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
 | 
						|
  
 | 
						|
  // Find the first branch instr in the sequence of machine instrs for term
 | 
						|
  // 
 | 
						|
  unsigned first = 0;
 | 
						|
  while (! mii.isBranch(termMvec[first]->getOpCode()) &&
 | 
						|
         ! mii.isReturn(termMvec[first]->getOpCode()))
 | 
						|
    ++first;
 | 
						|
  assert(first < termMvec.size() &&
 | 
						|
	 "No branch instructions for terminator?  Ok, but weird!");
 | 
						|
  if (first == termMvec.size())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
 | 
						|
  
 | 
						|
  // Add CD edges from each instruction in the sequence to the
 | 
						|
  // *last preceding* branch instr. in the sequence 
 | 
						|
  // Use a latency of 0 because we only need to prevent out-of-order issue.
 | 
						|
  // 
 | 
						|
  for (unsigned i = termMvec.size(); i > first+1; --i) {
 | 
						|
    SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
 | 
						|
    assert(toNode && "No node for instr generated for branch/ret?");
 | 
						|
    
 | 
						|
    for (unsigned j = i-1; j != 0; --j) 
 | 
						|
      if (mii.isBranch(termMvec[j-1]->getOpCode()) ||
 | 
						|
          mii.isReturn(termMvec[j-1]->getOpCode())) {
 | 
						|
        SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
 | 
						|
        assert(brNode && "No node for instr generated for branch/ret?");
 | 
						|
        (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
 | 
						|
                                  SchedGraphEdge::NonDataDep, 0);
 | 
						|
        break;			// only one incoming edge is enough
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add CD edges from each instruction preceding the first branch
 | 
						|
  // to the first branch.  Use a latency of 0 as above.
 | 
						|
  // 
 | 
						|
  for (unsigned i = first; i != 0; --i) {
 | 
						|
    SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
 | 
						|
    assert(fromNode && "No node for instr generated for branch?");
 | 
						|
    (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
 | 
						|
                              SchedGraphEdge::NonDataDep, 0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now add CD edges to the first branch instruction in the sequence from
 | 
						|
  // all preceding instructions in the basic block.  Use 0 latency again.
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N=MBB.size(); i < N; i++)  {
 | 
						|
    if (MBB[i] == termMvec[first])   // reached the first branch
 | 
						|
      break;
 | 
						|
    
 | 
						|
    SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]);
 | 
						|
    if (fromNode == NULL)
 | 
						|
      continue;			// dummy instruction, e.g., PHI
 | 
						|
    
 | 
						|
    (void) new SchedGraphEdge(fromNode, firstBrNode,
 | 
						|
                              SchedGraphEdge::CtrlDep,
 | 
						|
                              SchedGraphEdge::NonDataDep, 0);
 | 
						|
      
 | 
						|
    // If we find any other machine instructions (other than due to
 | 
						|
    // the terminator) that also have delay slots, add an outgoing edge
 | 
						|
    // from the instruction to the instructions in the delay slots.
 | 
						|
    // 
 | 
						|
    unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode());
 | 
						|
    assert(i+d < N && "Insufficient delay slots for instruction?");
 | 
						|
      
 | 
						|
    for (unsigned j=1; j <= d; j++) {
 | 
						|
      SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]);
 | 
						|
      assert(toNode && "No node for machine instr in delay slot?");
 | 
						|
      (void) new SchedGraphEdge(fromNode, toNode,
 | 
						|
                                SchedGraphEdge::CtrlDep,
 | 
						|
                                SchedGraphEdge::NonDataDep, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const int SG_LOAD_REF  = 0;
 | 
						|
static const int SG_STORE_REF = 1;
 | 
						|
static const int SG_CALL_REF  = 2;
 | 
						|
 | 
						|
static const unsigned int SG_DepOrderArray[][3] = {
 | 
						|
  { SchedGraphEdge::NonDataDep,
 | 
						|
    SchedGraphEdge::AntiDep,
 | 
						|
    SchedGraphEdge::AntiDep },
 | 
						|
  { SchedGraphEdge::TrueDep,
 | 
						|
    SchedGraphEdge::OutputDep,
 | 
						|
    SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
 | 
						|
  { SchedGraphEdge::TrueDep,
 | 
						|
    SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
 | 
						|
    SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
 | 
						|
    | SchedGraphEdge::OutputDep }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Add a dependence edge between every pair of machine load/store/call
 | 
						|
// instructions, where at least one is a store or a call.
 | 
						|
// Use latency 1 just to ensure that memory operations are ordered;
 | 
						|
// latency does not otherwise matter (true dependences enforce that).
 | 
						|
// 
 | 
						|
void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
 | 
						|
			     const TargetMachine& target) {
 | 
						|
  const TargetInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  // Instructions in memNodeVec are in execution order within the basic block,
 | 
						|
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
 | 
						|
  // 
 | 
						|
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
 | 
						|
    MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
 | 
						|
    int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
 | 
						|
                    : (mii.isLoad(fromOpCode)? SG_LOAD_REF
 | 
						|
                       : SG_STORE_REF));
 | 
						|
    for (unsigned jm=im+1; jm < NM; jm++) {
 | 
						|
      MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
 | 
						|
      int toType = (mii.isCall(toOpCode)? SG_CALL_REF
 | 
						|
                    : (mii.isLoad(toOpCode)? SG_LOAD_REF
 | 
						|
                       : SG_STORE_REF));
 | 
						|
      
 | 
						|
      if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
 | 
						|
        (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
 | 
						|
                                  SchedGraphEdge::MemoryDep,
 | 
						|
                                  SG_DepOrderArray[fromType][toType], 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
} 
 | 
						|
 | 
						|
// Add edges from/to CC reg instrs to/from call instrs.
 | 
						|
// Essentially this prevents anything that sets or uses a CC reg from being
 | 
						|
// reordered w.r.t. a call.
 | 
						|
// Use a latency of 0 because we only need to prevent out-of-order issue,
 | 
						|
// like with control dependences.
 | 
						|
// 
 | 
						|
void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
 | 
						|
				 const TargetMachine& target) {
 | 
						|
  const TargetInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  // Instructions in memNodeVec are in execution order within the basic block,
 | 
						|
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
 | 
						|
  // 
 | 
						|
  for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
 | 
						|
    if (mii.isCall(callDepNodeVec[ic]->getOpCode())) {
 | 
						|
      // Add SG_CALL_REF edges from all preds to this instruction.
 | 
						|
      for (unsigned jc=0; jc < ic; jc++)
 | 
						|
	(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
 | 
						|
				  SchedGraphEdge::MachineRegister,
 | 
						|
				  MachineIntRegsRID,  0);
 | 
						|
      
 | 
						|
      // And do the same from this instruction to all successors.
 | 
						|
      for (unsigned jc=ic+1; jc < NC; jc++)
 | 
						|
	(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
 | 
						|
				  SchedGraphEdge::MachineRegister,
 | 
						|
				  MachineIntRegsRID,  0);
 | 
						|
    }
 | 
						|
  
 | 
						|
#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
 | 
						|
  // Find the call instruction nodes and put them in a vector.
 | 
						|
  std::vector<SchedGraphNode*> callNodeVec;
 | 
						|
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
 | 
						|
    if (mii.isCall(memNodeVec[im]->getOpCode()))
 | 
						|
      callNodeVec.push_back(memNodeVec[im]);
 | 
						|
  
 | 
						|
  // Now walk the entire basic block, looking for CC instructions *and*
 | 
						|
  // call instructions, and keep track of the order of the instructions.
 | 
						|
  // Use the call node vec to quickly find earlier and later call nodes
 | 
						|
  // relative to the current CC instruction.
 | 
						|
  // 
 | 
						|
  int lastCallNodeIdx = -1;
 | 
						|
  for (unsigned i=0, N=bbMvec.size(); i < N; i++)
 | 
						|
    if (mii.isCall(bbMvec[i]->getOpCode())) {
 | 
						|
      ++lastCallNodeIdx;
 | 
						|
      for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
 | 
						|
        if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
 | 
						|
          break;
 | 
						|
      assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
 | 
						|
    }
 | 
						|
    else if (mii.isCCInstr(bbMvec[i]->getOpCode())) {
 | 
						|
      // Add incoming/outgoing edges from/to preceding/later calls
 | 
						|
      SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
 | 
						|
      int j=0;
 | 
						|
      for ( ; j <= lastCallNodeIdx; j++)
 | 
						|
        (void) new SchedGraphEdge(callNodeVec[j], ccNode,
 | 
						|
                                  MachineCCRegsRID, 0);
 | 
						|
      for ( ; j < (int) callNodeVec.size(); j++)
 | 
						|
        (void) new SchedGraphEdge(ccNode, callNodeVec[j],
 | 
						|
                                  MachineCCRegsRID, 0);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
 | 
						|
				    const TargetMachine& target) {
 | 
						|
  // This code assumes that two registers with different numbers are
 | 
						|
  // not aliased!
 | 
						|
  // 
 | 
						|
  for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
 | 
						|
       I != regToRefVecMap.end(); ++I) {
 | 
						|
    int regNum        = (*I).first;
 | 
						|
    RefVec& regRefVec = (*I).second;
 | 
						|
    
 | 
						|
    // regRefVec is ordered by control flow order in the basic block
 | 
						|
    for (unsigned i=0; i < regRefVec.size(); ++i) {
 | 
						|
      SchedGraphNode* node = regRefVec[i].first;
 | 
						|
      unsigned int opNum   = regRefVec[i].second;
 | 
						|
      const MachineOperand& mop =
 | 
						|
        node->getMachineInstr()->getExplOrImplOperand(opNum);
 | 
						|
      bool isDef = mop.opIsDefOnly();
 | 
						|
      bool isDefAndUse = mop.opIsDefAndUse();
 | 
						|
          
 | 
						|
      for (unsigned p=0; p < i; ++p) {
 | 
						|
        SchedGraphNode* prevNode = regRefVec[p].first;
 | 
						|
        if (prevNode != node) {
 | 
						|
          unsigned int prevOpNum = regRefVec[p].second;
 | 
						|
          const MachineOperand& prevMop =
 | 
						|
            prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
 | 
						|
          bool prevIsDef = prevMop.opIsDefOnly();
 | 
						|
          bool prevIsDefAndUse = prevMop.opIsDefAndUse();
 | 
						|
          if (isDef) {
 | 
						|
            if (prevIsDef)
 | 
						|
              new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                 SchedGraphEdge::OutputDep);
 | 
						|
            if (!prevIsDef || prevIsDefAndUse)
 | 
						|
              new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                 SchedGraphEdge::AntiDep);
 | 
						|
          }
 | 
						|
	  
 | 
						|
          if (prevIsDef)
 | 
						|
            if (!isDef || isDefAndUse)
 | 
						|
              new SchedGraphEdge(prevNode, node, regNum,
 | 
						|
                                 SchedGraphEdge::TrueDep);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Adds dependences to/from refNode from/to all other defs
 | 
						|
// in the basic block.  refNode may be a use, a def, or both.
 | 
						|
// We do not consider other uses because we are not building use-use deps.
 | 
						|
// 
 | 
						|
void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
 | 
						|
				  const RefVec& defVec,
 | 
						|
				  const Value* defValue,
 | 
						|
				  bool  refNodeIsDef,
 | 
						|
				  bool  refNodeIsDefAndUse,
 | 
						|
				  const TargetMachine& target) {
 | 
						|
  bool refNodeIsUse = !refNodeIsDef || refNodeIsDefAndUse;
 | 
						|
  
 | 
						|
  // Add true or output dep edges from all def nodes before refNode in BB.
 | 
						|
  // Add anti or output dep edges to all def nodes after refNode.
 | 
						|
  for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
 | 
						|
    if ((*I).first == refNode)
 | 
						|
      continue;                       // Dont add any self-loops
 | 
						|
    
 | 
						|
    if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
 | 
						|
      // (*).first is before refNode
 | 
						|
      if (refNodeIsDef)
 | 
						|
        (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | 
						|
                                  SchedGraphEdge::OutputDep);
 | 
						|
      if (refNodeIsUse)
 | 
						|
        (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | 
						|
                                  SchedGraphEdge::TrueDep);
 | 
						|
    } else {
 | 
						|
      // (*).first is after refNode
 | 
						|
      if (refNodeIsDef)
 | 
						|
        (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | 
						|
                                  SchedGraphEdge::OutputDep);
 | 
						|
      if (refNodeIsUse)
 | 
						|
        (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | 
						|
                                  SchedGraphEdge::AntiDep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
 | 
						|
					const ValueToDefVecMap& valueToDefVecMap,
 | 
						|
					const TargetMachine& target) {
 | 
						|
  SchedGraphNode* node = getGraphNodeForInstr(&MI);
 | 
						|
  if (node == NULL)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Add edges for all operands of the machine instruction.
 | 
						|
  // 
 | 
						|
  for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
 | 
						|
    switch (MI.getOperand(i).getType()) {
 | 
						|
    case MachineOperand::MO_VirtualRegister:
 | 
						|
    case MachineOperand::MO_CCRegister:
 | 
						|
      if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
 | 
						|
        ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | 
						|
        if (I != valueToDefVecMap.end())
 | 
						|
          addEdgesForValue(node, I->second, srcI,
 | 
						|
                           MI.getOperand(i).opIsDefOnly(),
 | 
						|
                           MI.getOperand(i).opIsDefAndUse(), target);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case MachineOperand::MO_MachineRegister:
 | 
						|
      break; 
 | 
						|
      
 | 
						|
    case MachineOperand::MO_SignExtendedImmed:
 | 
						|
    case MachineOperand::MO_UnextendedImmed:
 | 
						|
    case MachineOperand::MO_PCRelativeDisp:
 | 
						|
      break;	// nothing to do for immediate fields
 | 
						|
      
 | 
						|
    default:
 | 
						|
      assert(0 && "Unknown machine operand type in SchedGraph builder");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add edges for values implicitly used by the machine instruction.
 | 
						|
  // Examples include function arguments to a Call instructions or the return
 | 
						|
  // value of a Ret instruction.
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
 | 
						|
    if (MI.getImplicitOp(i).opIsUse() || MI.getImplicitOp(i).opIsDefAndUse())
 | 
						|
      if (const Value* srcI = MI.getImplicitRef(i)) {
 | 
						|
        ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | 
						|
        if (I != valueToDefVecMap.end())
 | 
						|
          addEdgesForValue(node, I->second, srcI,
 | 
						|
                           MI.getImplicitOp(i).opIsDefOnly(),
 | 
						|
                           MI.getImplicitOp(i).opIsDefAndUse(), target);
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
 | 
						|
				       SchedGraphNode* node,
 | 
						|
				       std::vector<SchedGraphNode*>& memNodeVec,
 | 
						|
				       std::vector<SchedGraphNode*>& callDepNodeVec,
 | 
						|
				       RegToRefVecMap& regToRefVecMap,
 | 
						|
				       ValueToDefVecMap& valueToDefVecMap) {
 | 
						|
  const TargetInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  MachineOpCode opCode = node->getOpCode();
 | 
						|
  
 | 
						|
  if (mii.isCall(opCode) || mii.isCCInstr(opCode))
 | 
						|
    callDepNodeVec.push_back(node);
 | 
						|
  
 | 
						|
  if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
 | 
						|
    memNodeVec.push_back(node);
 | 
						|
  
 | 
						|
  // Collect the register references and value defs. for explicit operands
 | 
						|
  // 
 | 
						|
  const MachineInstr& MI = *node->getMachineInstr();
 | 
						|
  for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
 | 
						|
    const MachineOperand& mop = MI.getOperand(i);
 | 
						|
    
 | 
						|
    // if this references a register other than the hardwired
 | 
						|
    // "zero" register, record the reference.
 | 
						|
    if (mop.hasAllocatedReg()) {
 | 
						|
      int regNum = mop.getAllocatedRegNum();
 | 
						|
      
 | 
						|
      // If this is not a dummy zero register, record the reference in order
 | 
						|
      if (regNum != target.getRegInfo().getZeroRegNum())
 | 
						|
        regToRefVecMap[mop.getAllocatedRegNum()]
 | 
						|
          .push_back(std::make_pair(node, i));
 | 
						|
 | 
						|
      // If this is a volatile register, add the instruction to callDepVec
 | 
						|
      // (only if the node is not already on the callDepVec!)
 | 
						|
      if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
 | 
						|
        {
 | 
						|
          unsigned rcid;
 | 
						|
          int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid);
 | 
						|
          if (target.getRegInfo().getMachineRegClass(rcid)
 | 
						|
              ->isRegVolatile(regInClass))
 | 
						|
            callDepNodeVec.push_back(node);
 | 
						|
        }
 | 
						|
          
 | 
						|
      continue;                     // nothing more to do
 | 
						|
    }
 | 
						|
    
 | 
						|
    // ignore all other non-def operands
 | 
						|
    if (!MI.getOperand(i).opIsDefOnly() &&
 | 
						|
        !MI.getOperand(i).opIsDefAndUse())
 | 
						|
      continue;
 | 
						|
      
 | 
						|
    // We must be defining a value.
 | 
						|
    assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
 | 
						|
            mop.getType() == MachineOperand::MO_CCRegister)
 | 
						|
           && "Do not expect any other kind of operand to be defined!");
 | 
						|
    assert(mop.getVRegValue() != NULL && "Null value being defined?");
 | 
						|
    
 | 
						|
    valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i)); 
 | 
						|
  }
 | 
						|
  
 | 
						|
  // 
 | 
						|
  // Collect value defs. for implicit operands.  They may have allocated
 | 
						|
  // physical registers also.
 | 
						|
  // 
 | 
						|
  for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
 | 
						|
    const MachineOperand& mop = MI.getImplicitOp(i);
 | 
						|
    if (mop.hasAllocatedReg()) {
 | 
						|
      int regNum = mop.getAllocatedRegNum();
 | 
						|
      if (regNum != target.getRegInfo().getZeroRegNum())
 | 
						|
        regToRefVecMap[mop.getAllocatedRegNum()]
 | 
						|
          .push_back(std::make_pair(node, i + MI.getNumOperands()));
 | 
						|
      continue;                     // nothing more to do
 | 
						|
    }
 | 
						|
 | 
						|
    if (mop.opIsDefOnly() || mop.opIsDefAndUse()) {
 | 
						|
      assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
 | 
						|
      valueToDefVecMap[MI.getImplicitRef(i)].push_back(std::make_pair(node,
 | 
						|
                                                                          -i)); 
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::buildNodesForBB(const TargetMachine& target,
 | 
						|
				 MachineBasicBlock& MBB,
 | 
						|
				 std::vector<SchedGraphNode*>& memNodeVec,
 | 
						|
				 std::vector<SchedGraphNode*>& callDepNodeVec,
 | 
						|
				 RegToRefVecMap& regToRefVecMap,
 | 
						|
				 ValueToDefVecMap& valueToDefVecMap) {
 | 
						|
  const TargetInstrInfo& mii = target.getInstrInfo();
 | 
						|
  
 | 
						|
  // Build graph nodes for each VM instruction and gather def/use info.
 | 
						|
  // Do both those together in a single pass over all machine instructions.
 | 
						|
  for (unsigned i=0; i < MBB.size(); i++)
 | 
						|
    if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) {
 | 
						|
      SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
 | 
						|
      noteGraphNodeForInstr(MBB[i], node);
 | 
						|
      
 | 
						|
      // Remember all register references and value defs
 | 
						|
      findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
 | 
						|
                            regToRefVecMap, valueToDefVecMap);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraph::buildGraph(const TargetMachine& target) {
 | 
						|
  // Use this data structure to note all machine operands that compute
 | 
						|
  // ordinary LLVM values.  These must be computed defs (i.e., instructions). 
 | 
						|
  // Note that there may be multiple machine instructions that define
 | 
						|
  // each Value.
 | 
						|
  ValueToDefVecMap valueToDefVecMap;
 | 
						|
  
 | 
						|
  // Use this data structure to note all memory instructions.
 | 
						|
  // We use this to add memory dependence edges without a second full walk.
 | 
						|
  std::vector<SchedGraphNode*> memNodeVec;
 | 
						|
 | 
						|
  // Use this data structure to note all instructions that access physical
 | 
						|
  // registers that can be modified by a call (including call instructions)
 | 
						|
  std::vector<SchedGraphNode*> callDepNodeVec;
 | 
						|
  
 | 
						|
  // Use this data structure to note any uses or definitions of
 | 
						|
  // machine registers so we can add edges for those later without
 | 
						|
  // extra passes over the nodes.
 | 
						|
  // The vector holds an ordered list of references to the machine reg,
 | 
						|
  // ordered according to control-flow order.  This only works for a
 | 
						|
  // single basic block, hence the assertion.  Each reference is identified
 | 
						|
  // by the pair: <node, operand-number>.
 | 
						|
  // 
 | 
						|
  RegToRefVecMap regToRefVecMap;
 | 
						|
  
 | 
						|
  // Make a dummy root node.  We'll add edges to the real roots later.
 | 
						|
  graphRoot = new SchedGraphNode(0, NULL, -1, target);
 | 
						|
  graphLeaf = new SchedGraphNode(1, NULL, -1, target);
 | 
						|
 | 
						|
  //----------------------------------------------------------------
 | 
						|
  // First add nodes for all the machine instructions in the basic block
 | 
						|
  // because this greatly simplifies identifying which edges to add.
 | 
						|
  // Do this one VM instruction at a time since the SchedGraphNode needs that.
 | 
						|
  // Also, remember the load/store instructions to add memory deps later.
 | 
						|
  //----------------------------------------------------------------
 | 
						|
 | 
						|
  buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
 | 
						|
                  regToRefVecMap, valueToDefVecMap);
 | 
						|
  
 | 
						|
  //----------------------------------------------------------------
 | 
						|
  // Now add edges for the following (all are incoming edges except (4)):
 | 
						|
  // (1) operands of the machine instruction, including hidden operands
 | 
						|
  // (2) machine register dependences
 | 
						|
  // (3) memory load/store dependences
 | 
						|
  // (3) other resource dependences for the machine instruction, if any
 | 
						|
  // (4) output dependences when multiple machine instructions define the
 | 
						|
  //     same value; all must have been generated from a single VM instrn
 | 
						|
  // (5) control dependences to branch instructions generated for the
 | 
						|
  //     terminator instruction of the BB. Because of delay slots and
 | 
						|
  //     2-way conditional branches, multiple CD edges are needed
 | 
						|
  //     (see addCDEdges for details).
 | 
						|
  // Also, note any uses or defs of machine registers.
 | 
						|
  // 
 | 
						|
  //----------------------------------------------------------------
 | 
						|
      
 | 
						|
  // First, add edges to the terminator instruction of the basic block.
 | 
						|
  this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
 | 
						|
      
 | 
						|
  // Then add memory dep edges: store->load, load->store, and store->store.
 | 
						|
  // Call instructions are treated as both load and store.
 | 
						|
  this->addMemEdges(memNodeVec, target);
 | 
						|
 | 
						|
  // Then add edges between call instructions and CC set/use instructions
 | 
						|
  this->addCallDepEdges(callDepNodeVec, target);
 | 
						|
  
 | 
						|
  // Then add incoming def-use (SSA) edges for each machine instruction.
 | 
						|
  for (unsigned i=0, N=MBB.size(); i < N; i++)
 | 
						|
    addEdgesForInstruction(*MBB[i], valueToDefVecMap, target);
 | 
						|
  
 | 
						|
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
 | 
						|
  // Then add non-SSA edges for all VM instructions in the block.
 | 
						|
  // We assume that all machine instructions that define a value are
 | 
						|
  // generated from the VM instruction corresponding to that value.
 | 
						|
  // TODO: This could probably be done much more efficiently.
 | 
						|
  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
 | 
						|
    this->addNonSSAEdgesForValue(*II, target);
 | 
						|
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
 | 
						|
  
 | 
						|
  // Then add edges for dependences on machine registers
 | 
						|
  this->addMachineRegEdges(regToRefVecMap, target);
 | 
						|
  
 | 
						|
  // Finally, add edges from the dummy root and to dummy leaf
 | 
						|
  this->addDummyEdges();		
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// class SchedGraphSet
 | 
						|
// 
 | 
						|
SchedGraphSet::SchedGraphSet(const Function* _function,
 | 
						|
			     const TargetMachine& target) :
 | 
						|
  function(_function) {
 | 
						|
  buildGraphsForMethod(function, target);
 | 
						|
}
 | 
						|
 | 
						|
SchedGraphSet::~SchedGraphSet() {
 | 
						|
  // delete all the graphs
 | 
						|
  for(iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    delete *I;  // destructor is a friend
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraphSet::dump() const {
 | 
						|
  std::cerr << "======== Sched graphs for function `" << function->getName()
 | 
						|
            << "' ========\n\n";
 | 
						|
  
 | 
						|
  for (const_iterator I=begin(); I != end(); ++I)
 | 
						|
    (*I)->dump();
 | 
						|
  
 | 
						|
  std::cerr << "\n====== End graphs for function `" << function->getName()
 | 
						|
            << "' ========\n\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraphSet::buildGraphsForMethod(const Function *F,
 | 
						|
					 const TargetMachine& target) {
 | 
						|
  MachineFunction &MF = MachineFunction::get(F);
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
    addGraph(new SchedGraph(*I, target));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SchedGraphEdge::print(std::ostream &os) const {
 | 
						|
  os << "edge [" << src->getNodeId() << "] -> ["
 | 
						|
     << sink->getNodeId() << "] : ";
 | 
						|
  
 | 
						|
  switch(depType) {
 | 
						|
  case SchedGraphEdge::CtrlDep:		
 | 
						|
    os<< "Control Dep"; 
 | 
						|
    break;
 | 
						|
  case SchedGraphEdge::ValueDep:        
 | 
						|
    os<< "Reg Value " << val; 
 | 
						|
    break;
 | 
						|
  case SchedGraphEdge::MemoryDep:	
 | 
						|
    os<< "Memory Dep"; 
 | 
						|
    break;
 | 
						|
  case SchedGraphEdge::MachineRegister: 
 | 
						|
    os<< "Reg " << machineRegNum;
 | 
						|
    break;
 | 
						|
  case SchedGraphEdge::MachineResource:
 | 
						|
    os<<"Resource "<< resourceId;
 | 
						|
    break;
 | 
						|
  default: 
 | 
						|
    assert(0); 
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  os << " : delay = " << minDelay << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void SchedGraphNode::print(std::ostream &os) const {
 | 
						|
  os << std::string(8, ' ')
 | 
						|
     << "Node " << ID << " : "
 | 
						|
     << "latency = " << latency << "\n" << std::string(12, ' ');
 | 
						|
  
 | 
						|
  if (getMachineInstr() == NULL)
 | 
						|
    os << "(Dummy node)\n";
 | 
						|
  else {
 | 
						|
    os << *getMachineInstr() << "\n" << std::string(12, ' ');
 | 
						|
    os << inEdges.size() << " Incoming Edges:\n";
 | 
						|
    for (unsigned i=0, N = inEdges.size(); i < N; i++)
 | 
						|
      os << std::string(16, ' ') << *inEdges[i];
 | 
						|
  
 | 
						|
    os << std::string(12, ' ') << outEdges.size()
 | 
						|
       << " Outgoing Edges:\n";
 | 
						|
    for (unsigned i=0, N= outEdges.size(); i < N; i++)
 | 
						|
      os << std::string(16, ' ') << *outEdges[i];
 | 
						|
  }
 | 
						|
}
 |